预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A.B.C.D.2.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4B.4.5C.5D.63.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A'B'与AB的相似比为,得到线段A'B'.正确的画法是()A.B.C.D.4.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A.B.C.D.5.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.6.若将二次函数的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为()A.B.C.D.7.张华同学的身高为米,某一时刻他在阳光下的影长为米,同时与他邻近的一棵树的影长为米,则这棵树的高为()A.米B.米C.米D.米8.某班同学要测量学校升国旗的旗杆的高度,在同一时刻,量得某一同学的身高是1.6m,影长为1m,旗杆的影长为7.5m,则旗杆的高度是()A.9mB.10mC.11mD.12m9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12B.﹣32C.32D.﹣3610.如图,是的直径,切于点A,若,则的度数为()A.40°B.45°C.60°D.70°二、填空题(每小题3分,共24分)11.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.12.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.睡眠时间(小时)6789学生人数864213.已知一次函数y1=x+m的图象如图所示,反比例函数y2=,当x>0时,y2随x的增大而_____(填“增大”或“减小”).14.如图,如果将半径为的圆形纸片剪去一个圆心角为的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为______.15.计算:×=______.16.函数y=中的自变量的取值范围是____________.17.如图,在中,,于,已知,则__________.18.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.三、解答题(共66分)19.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m的值.20.(6分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.(6分)已知抛物线经过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并写出点的坐标;(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;(3)若点在抛物线上,且,试确定满足条件的点的个数.22.(8分)如图,⊙中,弦与相交于点,,连接.求证:⑴;⑵.23.(8分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)求这条抛物线的解析式;(2)水面上升1m,水面宽是多少?24.(8分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,