预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

苏教七年级下册期末解答题压轴数学试卷强力推荐解析一、解答题1.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.2.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.3.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)4.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵,(______)∴,(等式性质)∵,∴,∴.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与的角平分线交于点,,,则______;③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;④如图④,,的角平分线交于点,则,与之间的数量关系是______;⑤如图⑤,,的角平分线交于点,,,求的度数.5.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.(1)若,________.(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.6.已知,如图1,射线PE分别与直线AB、CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=,∠EMF=,且.(1)=____°,=______°;直线AB与CD的位置关系是_______;(2)如图2,若点G是射线MA上任意一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M和点N,时,作∠PMB的角平分线MQ与射线FM相交于点Q,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.7.如图1,已知,是直线,外的一点,于点,交于点,满足.(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕点按逆时针方向匀速旋转,当到达时立刻返回至,然后继续按上述方式旋转;射线从出发,以相同的速度绕点按顺时针方向旋转至后停止运动,此时射线也停止运动.若射线、射线同时开始运动,设运动时间为秒.①当射线平分时,求的度数;②当直线与直线相交所成的锐角是时,则________.8.(问题情境)苏科版义务教育教科书数学七下有这样的一个问题:(1)探究1:如图1,在中,P是与的平分线和的交点,通过分析发现,理由如下:∵和分别是和的角平分线,∴,.∴.又∵在中,,∴∴(2)探究2:如图2中,H是外角与外角的平分线