预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

ComplexRidgeletsforImageDenoising1IntroductionWavelettransformshavebeensuccessfullyusedinmanyscientificfieldssuchasimagecompression,imagedenoising,signalprocessing,computergraphics,andpatternrecognition,tonameonlyafew.Donohoandhiscoworkerspioneeredawaveletdenoisingschemebyusingsoftthresholdingandhardthresholding.Thisapproachappearstobeagoodchoiceforanumberofapplications.Thisisbecauseawavelettransformcancompacttheenergyoftheimagetoonlyasmallnumberoflargecoefficientsandthemajorityofthewaveletcoeficientsareverysmallsothattheycanbesettozero.Thethresholdingofthewaveletcoeficientscanbedoneatonlythedetailwaveletdecompositionsubbands.Wekeepafewlowfrequencywaveletsubbandsuntouchedsothattheyarenotthresholded.ItiswellknownthatDonoho'smethodofferstheadvantagesofsmoothnessandadaptation.However,asCoifmanandDonohopointedout,thisalgorithmexhibitsvisualartifacts:Gibbsphenomenaintheneighbourhoodofdiscontinuities.Therefore,theyproposeinatranslationinvariant(TI)denoisingschemetosuppresssuchartifactsbyaveragingoverthedenoisedsignalsofallcircularshifts.TheexperimentalresultsinconfirmthatsingleTIwaveletdenoisingperformsbetterthanthenon-TIcase.BuiandChenextendedthisTIschemetothemultiwaveletcaseandtheyfoundthatTImultiwaveletdenoisinggavebetterresultsthanTIsinglewaveletdenoising.CaiandSilvermanproposedathresholdingschemebytakingtheneighbourcoeficientsintoaccountTheirexperimentalresultsshowedapparentadvantagesoverthetraditionalterm-by-termwaveletdenoising.ChenandBuiextendedthisneighbouringwaveletthresholdingideatothemultiwaveletcase.Theyclaimedthatneighbourmultiwaveletdenoisingoutperformsneighboursinglewaveletdenoisingforsomestandardtestsignalsandreal-lifeimages.Chenetal.proposedanimagedenoisingschemebyconsideringasquareneighbourhoodinthewaveletdomain.Chenetal.alsotriedtocustomizethewavelet_lterandthethresholdforimagedenoising.Experimentalresultsshowthatthesetwomethodsproducebetterdenoisingresults.Theridgelettransformwasdevelopedoverseveralyearstobreakthelimitationsofthewavelettransform.The2D