预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2021年广东省汕头市潮南区阳光实验学校中考数学一模试卷一、选择题(30分)1.(3分)9的平方根为()A.3B.﹣3C.±3D.2.(3分)下列运算正确的是()A.a3•a4=x12B.(﹣6a6)÷(﹣2a2)=3a3C.(a﹣2)2=a2﹣4D.2a﹣3a=﹣a3.(3分)用科学记数法表示“8500亿”为()A.85×1010B.8.5×1011C.85×1011D.0.85×10124.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.(3分)如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为()A.24πB.32πC.36πD.48π6.(3分)在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个7.(3分)某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5B.6C.7D.88.(3分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点.当一次函数的值大于反比例函数的值时,自变量x的取值范围是()A.﹣2<x<1B.0<x<1C.x<﹣2和0<x<1D.﹣2<x<1和x>19.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>010.(3分)如图,已知矩形ABCD中,AB=8,BC=5π.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为()A.4πB.5πC.8πD.10π二、填空题(24分)11.(4分)在实数范围内分解因式:2x2﹣6=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14.(4分)用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为.15.(4分)如图,梯形ABCD的两条对角线交于点E,图中面积相等的三角形共有对.16.(4分)如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…则第2014次输出的结果为.三、解答题(18)17.(6分)计算:(5﹣1)0+()﹣1+×3﹣|﹣2|﹣tan60°18.(6分)先化简,再求值:﹣÷,其中﹣2.19.(6分)已知:如图,在平行四边形ABCD中,(1)求作:∠A的平分线AE,交BC于点E;(要求尺规作图,保留作图痕迹,不写作法)(2)求证:AB=BE.四、解答题(21分)20.(7分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐20元的人数为24人,(1)他们一共抽查了多少人?捐款数不少于20元的概率是多少?(2)这组数据的众数是(元)、中位数是(元);(3)若该校共有660名学生,请估算全校学生共捐款多少元?21.(7分)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?22.(7分)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DFLAE,垂足为F,连接DE,(1)求证:△ABE≌△DFA;(2)如果AD=10,AB=6.求sin∠EDF的值.五、解答题(27分)23.(9分)甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:(1)求乙车所行路程y与时间x之间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)24.(9分)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.(1)求⊙O的直径;(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接