预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

个性化辅导讲义杭州龙文教育科技有限公司湖墅校区学生:科目:数学教师:刘美玲课题函数的综合压轴题型归类教学目标要学会利用特殊图形的性质去分析二次函数与特殊图形的关系掌握特殊图形面积的各种求法重点、难点利用图形的性质找点分解图形求面积教学内容一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总1、两点间的距离公式:2、中点坐标:线段的中点的坐标为:直线()与()的位置关系:(1)两直线平行且(2)两直线相交(3)两直线重合且(4)两直线垂直3、一元二次方程有整数根问题,解题步骤如下:①用和参数的其他要求确定参数的取值范围;②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。例:关于的一元二次方程有两个整数根,且为整数,求的值。4、二次函数与轴的交点为整数点问题。(方法同上)例:若抛物线与轴交于两个不同的整数点,且为正整数,试确定此抛物线的解析式。5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:已知关于的方程(为实数),求证:无论为何值,方程总有一个固定的根。解:当时,;当时,,,、;综上所述:无论为何值,方程总有一个固定的根是1。6、函数过固定点问题,举例如下:已知抛物线(是常数),求证:不论为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。解:把原解析式变形为关于的方程;∴,解得:;∴抛物线总经过一个固定的点(1,-1)。(题目要求等价于:关于的方程不论为何值,方程恒成立)小结:关于的方程有无数解7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线、,点在上,分别在、上确定两点、,使得之和最小。(2)如图,直线、相交,两个固定点、,分别在、上确定两点、,使得之和最小。(3)如图,是直线同旁的两个定点,线段,在直线上确定两点、(在的左侧),使得四边形的周长最小。8、在平面直角坐标系中求面积的方法:直接用公式、割补法三角形的面积求解常用方法:如右图,S△PAB=1/2·PM·△x=1/2·AN·△y9、函数的交点问题:二次函数()与一次函数()(1)解方程组可求出两个图象交点的坐标。(2)解方程组,即,通过可判断两个图象的交点的个数有两个交点仅有一个交点没有交点10、方程法(1)设:设主动点的坐标或基本线段的长度(2)表示:用含同一未知数的式子表示其他相关的数量(3)列方程或关系式11、几何分析法特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。几何要求几何分析涉及公式应用图形跟平行有关的图形平移、平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。等腰三角形全等等腰梯形跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等【例题精讲】OxyABCD一基础构图:y=(以下几种分类的函数解析式就是这个)★和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标OxyABCD★求面积最大连接AC,在第四象限找一点P,使得面积最大,求出P坐标OxyABCD讨论直角三角连接AC,在对称轴上找一点P,使得为直角三角形,求出P坐标或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.讨论等腰三角连接AC,在对称轴上找一点P,使得为等腰三角形,求出P坐标OxyABCD讨论平行四边形1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标二综