预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题03手拉手模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就手拉手模型进行梳理及对应试题分析,方便掌握。模型1.手拉手模型(全等模型)【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。【常见模型及证法】(等腰)(等边)(等腰直角)公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得ABDACE。1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC和ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BDCE;(2)解决问题:如图2,若△ACB和DCE均为等腰直角三角形,ACBDCE90,点A,D,E在同一条直线上,CM为DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图1图22.(2022·黑龙江·中考真题)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PAPBPC(或PAPCPB)成立;请证明.(2)将ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.3.(2022·吉林·九年级期末)如图①,在ABC中,C90,ACBC6,点D,E分别在边AC,BC上,且CDCE2,此时ADBE,ADBE成立.(1)将△CDE绕点C逆时针旋转90时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.模型2.手拉手模型(旋转相似模型)【模型解读与图示】旋转放缩变换,图中必有两对相似三角形.1.(2022·四川达州·中考真题)某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形ABC和等腰直角三角形CDE,按如图1的方式摆放,ACBECD90,随后保持ABC不动,将△CDE绕点C按逆时针方向旋转(090),连接AE,BD,延长BD交AE于点F,连接CF.该数学兴趣小组进行如下探究,请你帮忙解答:(1)【初步探究】如图2,当ED∥BC时,则_____;(2)【初步探究】如图3,当点E,F重合时,请直接写出AF,BF,CF之间的数量关系:_________;(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.(4)【拓展延伸】如图5,在ABC与△CDE中,ACBDCE90,若BCmAC,CDmCE(m为常数).保持ABC不动,将△CDE绕点C按逆时针方向旋转(090),连接AE,BD,延长BD交AE于点F,连接CF,如图6.试探究AF,BF,CF之间的数量关系,并说明理由.2.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,∠ABC和∠ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,∠ABC和∠ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接BDABAD写出的值.(3)【拓展提升】如图3,∠ABC和∠ADE都是直角三角形,∠ABC=∠ADE=90°,且=CEBCDE3BD=.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.4CE3.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边∠ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边∠AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边∠ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠