预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

核心素养专题:古代问题中的勾股定理◆类型一勾股定理应用中的实际问题1.【“引葭赴岸”问题】如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是()A.10尺.11B尺.12尺C.13尺D第1题图第2题图2.(2017·西城区期末)《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短,横之不出四尺,纵之不出二尺,斜之适出,问户斜几何.注:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺,斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为________尺,线段DF的长为________尺;(2)设户斜长x,则可列方程为________________.3.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据题意,可得秋千的绳索长为________尺.4.(2017·东营中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度为________尺.◆类型二勾股定理的证明问题5.(2017·丽水中考)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图①所示.在图②中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为________.6.中国古代对勾股定理有深刻的认识.(1)三国时代吴国数学家赵爽第一次对勾股定理加以证明:用四个全等的图①所示的直角三角形拼成一个如图②所示的大正方形,中间空白部分是一个小正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,求(a+b)2的值;(2)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其S边长的方法:第一步=m;第二步:m=k;第三步:分别用3,4,5乘以k,得三边长.当6面积S=150时,请用“积求勾股法”求出这个直角三角形的三边长.参考答案与解析1.D2.(1)42(2)(x-4)2+(x-2)2=x23.14.5204.25解析:将圆柱侧面展开,如图,AC=3尺,CD==4(尺),∴AD=32+42=55(尺),∴葛藤的最短长度为5×5=25(尺).5.1016.解:(1)根据勾股定理可得a2+b2=13,四个直角三角形的面积是ab×4=13-12=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,即(a+b)2=25.S150(2)当S=150时,k=m===25=5,所以三边长分别为:3×5=15,664×5=20,5×5=25,所以这个直角三角形的三边长为15,20,25.