预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年江苏省南通市高考数学模拟试卷(一)一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)设集合A={1,m},B={2,3},若A∩B={3},则m=.2.(5分)设a∈R,i是虚数单位,若(a+i)(1﹣i)为纯虚数,则a=.3.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的方差为.4.(5分)某兴趣小组有男生2名,女生1名,现从中任选2名学生去参加问卷调查,则恰有一名男生与一名女生的概率为.5.(5分)等差数列{an}中,a1=﹣3,11a5=5a8,则其前n项和Sn的最小值为.6.(5分)如图是一个算法的流程图,若输入n的值是10,则输出S的值是.7.(5分)如图,用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的容积是.8.(5分)不等式组表示的平面区域的面积为2,则实数a的值为.9.(5分)已知函数f(x)=2sin(ωx+)(ω>0),函数f(x)的图象与x轴两个相邻交点的距离为π,则f(x)的单调递增区间是.10.(5分)如图,在直角梯形ABCD中,AB∥CD,∠ADC=90°,AB=3,AD=,E为BC中点,若?=3,则?=.11.(5分)已知F1,F2是椭圆+=1(m>2)的左,右焦点,点P在椭圆上,若|PF1|?|PF2|=2m,则该椭圆离心率的取值范围为.12.(5分)已知实数x,y满足﹣≤x≤,﹣≤y≤,若2?3x+sinx﹣2=0,9y+sinycosy﹣1=0,则cos(x﹣2y)的值为.13.(5分)若存在实数a、b使得直线ax+by=1与线段AB(其中A(1,0),B(2,1))只有一个公共点,且不等式+≥20(a2+b2)对于任意θ∈(0,)成立,则正实数p的取值范围为.14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a、b、c,已知sinB=,且?=12.(1)求△ABC的面积;(2)若a,b,c成等差数列,求b的值.16.(14分)如图,在平行六面体ABCD﹣A1B1C1D1中,侧面DCC1D1是菱形,且平面DCC1D1⊥平面ABCD,∠D1DC=,E是A1D的中点,F是BD1的中点.(1)求证:EF∥平面ABCD;(2)若M是CD的中点,求证:平面D1AM⊥平面ABCD.17.(14分)如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=,管理部门欲在该地从M到D修建小路;在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.(1)设∠PBC=θ,试用θ表示修建的小路与线段PQ及线段QD的总长度l;(2)求l的最小值.18.(16分)已知圆O:x2+y2=4,两个定点A(a,2),B(m,1),其中a∈R,m>0.P为圆O上任意一点,且=k(k为常数).(1)求A,B的坐标及常数k的值;(2)过点E(a,t)作直线l与圆C:x2+y2=m交于M、N两点,若M点恰好是线段NE的中点,求实数t的取值范围.19.(16分)已知函数f(x)=x3+x2+kx,k∈R,函数f′(x)为f(x)的导函数.(1)数列{an}满足an=,求a1+a2+a3+a4+a5;(2)数列{b}满足b=f′(b),nn+1n①当k=﹣且b1>1时,证明:数列{lg(bn+)}为等比数列;②当k=0,b1=b>0时,证明:<.20.(16分)已知函数f(x)=xlnx﹣k(x﹣1),k∈R.(1)当k=1时,求函数f(x)的单调区间.(2)若函数y=f(x)在区间(1,+∞)上有1个零点,求实数k的取值范围.(3)是否存在正整数k,使得f(x)+x>0在x∈(1,+∞)上恒成立?若存在,求出k的最大值;若不存在,说明理由.附加题[选修4-1:几何证明选讲](任选两题)21.(10分)如图,☉O1,☉O2交于两点P,Q,直线AB过点P,与⊙O1,⊙O2分别交于点A,B,直线CD过点Q,与⊙O1,⊙O2分别交于点C,D.求证:AC∥BD.附加题[选修4-2:矩阵与变换]22.(10分)在平面直角坐标系xOy中,先对曲线C作矩阵A=(0<θ<2π)所对应的变换,再将所得曲线作矩阵B=(0<k<1)所对应的变换,若连续实施两次变换所对应的矩阵为,求k,θ的值.[选修4-4:坐标系与参数方程选讲]23.在极坐标系中,过点P(,)作曲线ρ=2cosθ的切线l,求直线l的极坐标方程.[选修4-5:不等式选讲]24.已知实数a,b满足|a+b|≤2,求证:|a2+2