预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

我国高矿化度矿井水水质特征及处理技术应用现状摘要:本文总结了我国高矿化度矿井水分布区域及水质特征情况,并对目前各种高矿化度矿井水处理技术进行了介绍,重点论述了反渗透技术处理高矿化矿井水在我国的应用情况,指出反渗透技术是今后高矿化度矿井水脱盐处理技术的发展方向。关键词:矿井水高矿化度处理技术反渗透中途分类号:S969.38文献标识码:A一、我国高矿化度矿井水分布区域及水质特征矿井水是煤矿生产中排放的主要污染源,煤矿产生的矿井水受到采煤作业、天气条件、煤系地层等冈素的影响,含有一定量的盐分,当盐的质量浓度大于1000mg/L时,即为高矿化度矿井水。我国大多数煤矿排放的矿井水是以悬浮物为主的常规矿井水和含铁锰的酸性矿井水,但在我国较为缺水的西北及北方矿区往往排出高矿化度的矿井水,相关资料显示,在陕西、甘肃、宁夏、新疆、内蒙、山西以及两淮、徐州、新汶、抚顺、阜新等地区都有高矿化度矿井水分布,淮南矿区排放高矿化度矿井水的数量占到矿区煤矿的50%以上,这些地区煤矿矿井水的矿化度一般在1000~10000mg/L,个别煤矿的矿井水矿化度则高达10000mg/L以上[1]。高矿化度矿井水是地下水与煤系地层中碳酸盐类岩层及硫酸盐岩层接触,该类矿物溶解于水的结果,从而使矿井水中Ca2+、Mg2+、HCO3-、CO32-、SO42-增多,有的酸性矿井水与碳酸盐类岩层中和,导致矿化度增高;也有的矿区气候干旱,年蒸发量远大于降水量,地层中盐分较高,地下水矿化度相应增高;少数矿区处于海水与矿井水交混分布区,因而矿井水盐分增多。表1为我国部分煤矿中含盐量较高的矿井水中的离子分布情况。表1我国部分煤矿含盐量较高的矿井水离子组成及总含盐量高矿化度矿井水不仅以煤粉为主的悬浮物含量超标,而且溶解性总固体、硬度、硫酸盐或氯化物等含量也超标,属于水质较差的矿井水。根据产生高矿化度的离子超标类型不同,高矿化度矿井水分为高硬度型、高硫酸盐型、高氯化物型或这几种类型的混合型。高矿化度矿井水中一般含有大量的Ca2+、Mg2+、K+、Na+、SO42-、C1-、HCO3-等离子。水质多数呈中性或偏碱性,带苦涩味,俗称苦咸水。二、高矿化度矿井水直接排放对环境的影响高矿化度矿井水如果不经过处理就直接排放,会给生态环境带来危害。主要表现为:进入河流会使地表水含盐量上升、浅层地下水位抬高、土壤滋生盐碱化、不耐盐碱类林木种势削弱,农作物减产等。同时还影响地区的工业生产,因为许多工业生产不能用高含盐量的水,若用则必须先降低水中含盐量,这样就会增加成本。若是不用而改用地下水,会造成地下水的大量开采,造成地下水资源的短缺,会严重影响本区的经济发展[2]。高矿化度矿井水的大量排放使浅层地下水位相对上升,使附近土壤水分及可溶性盐类含量增高,加剧了土壤盐碱化,对农作物和林木种植带来一定影响。一方面由于土壤水分含量高,湿度大,易于产生大的垡块,形成粘闭现象,对农业生产极为不利;另一方面土壤中盐分的增多,既影响了耕地的物理性质,又影响了土壤养分对农作物生长的有效性,造成减产,且某些盐类的离子过量时,会直接对农作物产生毒害作用,由于土壤的理化以及生物性质恶化,通常难以得到改良利用,影响土地的永续利用。三、高矿化度矿井水处理技术据调查,高矿化度矿井水水量约占我国北方重点煤矿矿井涌水量的30%,这些地区水资源缺乏,对这部分高矿化度矿井水进行处理利用,不但可以避免矿井水外排造成的环境污染,还可解决矿区用水紧张的问题。同一般的矿井水水质相比较,煤矿排放的高矿化度矿井水除具有高含盐量特征外,也含有悬浮物等这些常见的污染物,悬浮物等通过常规的混凝沉淀和过滤即可去除,但其中的各种离子则必须通过其他的途径进行脱除,脱盐是处理高矿化度矿井水的关键工序,也可以称为深度处理。常用的脱盐深度处理技术有离子交换、蒸馏、电渗析、反渗透等技术。1、离子交换法目前离子交换主要用在锅炉软化水末端处理等方面,在高矿化度矿井水的脱盐深度处理工艺工程中基本没有使用该方法。2、蒸馏法蒸馏法是目前海水淡化工业中成熟的技术。蒸馏法是以消耗热能为代价,进行热力脱盐淡化处理的方法。有一些技术文献提出,从热源价格方面考虑,蒸馏法适用于处理含盐量超过3000mg/L的高矿化度矿井水,且为了降低成本,蒸馏法可考虑用煤矸石作为廉价燃料,来淡化高矿化度矿井水[3]。但从目前实际现状来看,煤矸石热值低、含硫量较高,用煤矸石作为燃料,既不符合现有越发严格的大气防治控制政策要求,能获取的热量也少,专门采用煤矸石作为燃料的煤矿基本没有,要想获取稳定的热源,就需要通过燃煤、用电的方式来解决,这就需要很高的经济代价,由于这些现实的条件限制,基本未见有将蒸馏法应用于高矿化度矿井水脱盐深度处理的工程实例,可以预见,在今后的高矿化度矿井水处理工程,该方法的应用范围也将十分狭小,只有