预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

年上海市闵行区高考数学一模试卷(理科)2015一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.(4分)(2015•闵行区一模)已知集合A={x||x﹣|>},U=R,则∁UA=[﹣1,4].2.(4分)(2015•闵行区一模)若复数z满足(z+2)(1+i)=2i(i为虚数单位),则z=﹣1+i.3.(4分)(2015•闵行区一模)函数f(x)=xcosx,若f(a)=,则f(﹣a)=﹣.4.(4分)(2015•闵行区一模)计算=.5.(4分)(2015•闵行区一模)设f(x)=4x﹣2x+1(x≥0),则f﹣1(0)=1.6.(4分)(2015•闵行区一模)已知θ∈(,π),sin﹣cos=,则cosθ=.7.(4分)(2011•上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.8.(4分)(2015•闵行区一模)已知集合M={1,3},在M中可重复的依次取出三个数a,b,c,则“以a,b,c为边长恰好构成三角形”的概率是.9.(4分)(2015•闵行区一模)已知等边△ABC的边长为3,M是△ABC的外接圆上的动点,则的最大值为.【解析】:解:如图,==3||cos∠BAM,设OM是外接圆⊙O的半径为3×=,则当且同向时,则取得最大值.所以3||cos∠BAM=3(+OM)=;故答案为:.1/1310.(4分)(2015•闵行区一模)函数y=|2x|+|x|取最小值时x的取值范围是.【解析】:解:y=|2x|+|x|=|1+log2x|+|log2x|=f(x).当x≥1时,f(x)=1+2log2x≥1,当且仅当x=1时取等号;当0<x1时,f(x)=﹣1﹣2log2x≥1,当且仅当x=时取等号;当时,f(x)=1,因此时等号成立.综上可得:函数f(x)取最小值1时x的取值范围是.故答案为:.11.(4分)(2015•闵行区一模)已知函数f(x)=()x,g(x)=x,记函数h(x)=,则函数F(x)=h(x)+x﹣5所有零点的和为5.【解析】:解:∵函数f(x)=()x,g(x)=x,关于直线y=x对称,记函数h(x)=,∴可知h(x)关于直线y=x对称.∵y=x与y=5﹣x,交点为A(2.5,2.5)∴y=5﹣x,与函数h(x)交点关于A对称,x1+x2=2×=5∴函数F(x)=h(x)+x﹣5,的零点.设h(x)与y=5﹣x交点问题,可以解决函数F(x)=h(x)+x﹣5零点问题.2/13故函数F(x)=h(x)+x﹣5所有零点的和为5.故答案为:5.12.(4分)(2015•闵行区一模)已知F1、F2是椭圆Γ1:=1和双曲线Γ2:=1的公共焦点,P是它们的一个公共点,且∠F1PF2=,则mn的最大值为.【解析】:解:设|PF1|=s,|PF2|=t,由题意可得公共焦点为知F1(﹣2,0),F2(2,0),即有c=2,在三角形PF1F2中,由余弦定理可得4c2=s2+t2﹣2stcos60°即s2+t2﹣st=16,由椭圆的定义可得s+t=2m(m>0),由双曲线的定义可得s﹣t=2n(n>0),解得s=m+n,t=m﹣n.即有16=(m+n)2+(m﹣n)2﹣(m+n)(m﹣n)=m2+3n2≥2mn,即有mn≤.3/13当且仅当m=n,取得最大值.故答案为:.13.(4分)(2015•闵行区一模)在△ABC中,记角A、B、C所对边的边长分别为a、b、c,设S是△ABC的面积,若2SsinA<(•)sinB,则下列结论中:①a2<b2+c2;②c2>a2+b2;③cosBcosC>sinBsinC;④△ABC是钝角三角形.其中正确结论的序号是①②④.*14.(4分)(2015•闵行区一模)已知数列(f2x)=af(x)+b满足:对任意n∈N均有an+1=pan+3p﹣3(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{﹣19,﹣7,﹣3,5,10,29},则a1所有可能值的集合为{﹣1,﹣3,﹣29}.【解析】:解:(1)取a2=﹣19,a3=﹣7时,﹣7=﹣19p+3p﹣3,解得p=,=﹣4,不成立;(2)取a2=﹣19,a3=﹣3时,﹣3=﹣19p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3;(3)取a2=﹣19,a3=5时,5=﹣19p+3p﹣3,解得p=﹣,a4=5×=﹣7,a5=﹣7×=﹣1,不成立;(4)取a2=﹣19,a3=10时,10=﹣19p+3p﹣3,解得p=﹣,a4=10×=﹣,不成立;(5)取a2=﹣19,a3=29时,29=﹣19p+3p﹣3,解得p=﹣2,a4=29×(﹣2)+3×(﹣2)﹣3=﹣67,不成立;(6)取a2=﹣7,a3=﹣3时,﹣3=﹣7p+3p﹣3,解得p=