预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

单片机课程设计报告题目:温度监控报警系统专业:通信工程班级:姓名:指导教师:成绩:___________________________电气工程系2011年12月15日课程设计任务书一、设计目的掌握方波——正弦波信号发生器的原理及设计方法。掌握迟滞型比较器的特性参数的计算。了解单片集成函数发生器的工作原理及应用。能够使用电路仿真软件进行电路调试。掌握电子系统的一般设计方法。培养综合应用所学知识来指导实践的能力。掌握常用元器件的识别和测试。熟悉常用仪表,了解电路调试的基本方法。一、任务设计并制作一台信号发生器,使之能产生正弦波、方波。二、设计要求1.信号发生器能产生正弦波、方波;2输出信号频率在1Hz~1MHz范围内可调,输出信号频率步进间隔最小为1Hz;输出信号频率值可通过键盘进行设置;3.在1k负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调;4.输出信号波形无明显失真;频率稳定度:10-45.可实时显示输出信号的类型、幅度、频率和频率步进值;6.能产生双路信号,双路信号间相位可调。7.在50负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调,调节步进间隔为0.1V,输出信号的电压值可通过键盘进行设置。摘要波形发生器在一般的电子和通信实验中使用频率很高,目前我们实验室用的较多的波形发生器主要有两种:低频正弦波发生器和通用多波形发生器,前者只能产生正弦波,调节范围不大,但是信号稳定,失真度底,主要用在对波形有很高的要求的实验中;后者能产生正弦波、方波和三角波,也有的能产生三种以上波形。这两种波形发生器都比较昂贵,而在我们很多的实验中有的要求产生更多的波形种类和它们的谐波,有很多对于波形的要求不是很高,有的只是演示一下,在本课题中将这两方面的缺点结合起来加以改进,最大限度地利用单片机及其外围设备的资源,开发出能产生正弦、三角、方波、梯形、锯齿等多种波形和它们的谐波及组合波形,并可以根据实际情况的需要在波形存储器中写入不同的波形,可以随时添加,能满足一般的实验及演示的需要,并且成本很低,操作简洁方便。关键字:单片机波形存储锁相环中断D/A转换A/D转换目录第一章总体方案设计41.1原理框图41.2函数发生器的总方案4第二章单元电路的设计52.1方波发生电路的工作原理52.2矩形波发生电路7第三章电路的参数选择及计算103.1.方波中电容C1变化103.3总电路图113.4系统所需的元器件12第四章测试结果分析与总结12第五章参考文献12第一章总体方案设计1.1原理框图1.2函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波、矩形波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波-锯齿波函数发生器的设计方法。产生矩形波、方波、三角波、锯齿波的方案有多种,本课题采用先产生方波—三角波,再将三角波变换成锯齿波和矩形波的电路设计方法本课题中函数发生器电路组成框图如上所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到锯齿波的变换电路主要由比例运算放大器来完成,而三角波到矩形波的变换主要是通过比较器和积分器来实现的。第二章单元电路的设计2.1方波发生电路的工作原理集成运放A,电阻R1,R2,R3和双向稳压管组成反向滞回比较器,起开关作用;RC电路起反馈和延迟作用,电容C连到A的反向输入端,以控制滞回比较器的工作状态。滞回比较器输出电压Uo有两个工作状态:高电平+Uz和低电平-Uz,两个状态的翻转是通过RC电路的充放电改变滞回比较器的输入实现的。假设t=0时,电容C上电压Uo为0,输出电压为高电平,即Uo=+Uz,则集成运放同向输入端的电位U+=滞回比较器的第一阈值电压Uth1,即U1={R1/(R1+R2)}*Uz。输出端的高电平通过电阻R对电容C充电,电容电压Uc上升到略大于Uth1时,集成运放方向输入端电位U-大于同向输入端电压,输出电压发生越变,从高电平变为低电平;于是集成运放同向输入端电压立即变为第二阈值电压Uth2,即U+=【-R1/(R1+R2)】*Uz,输出电压变为低电平后,电容C将通过R先放电再充电,电容电压Uc随时间下降,放电过程如下图(a)虚线所示。当Uc下降到略小于Uth2时,集成运放反向输入端电位小于同向输入端电位,滞回比较器输出状态发生另一次越变,输出电压从低电平重新跳回到高电平。C又重新充电,周期性地重复上述过程。在电路稳定以后,电容C的充放