预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

4.2证明(3)引例例5已知:如图,AD是△ABC的高,E是AD上一点.AD=BD,DE=DC,求证:∠1=∠C.A小收获:学以致用:例6已知:如图,AD是三角形纸片ABC的高.将纸片沿直线EF折叠,使点A和点D重合.求证:EF∥BC.例6已知:如图,AD是三角形纸片ABC的高.将纸片沿直线EF折叠,使点A和点D重合.求证:EF∥BC.例6已知:如图,AD是三角形纸片ABC的高.将纸片沿直线EF折叠,使点A和点D重合.求证:EF∥BC.又有了收获:学以致用:你听说过费马点吗?如图,P为△ABC所在平面上的一点.如果∠APB=∠BPC=∠CPA=120,则点P就是费马点.费马点有许多有趣并且有意义的性质,例如,平面内一点P到△ABC三顶点的距离之和为PA+PB+PC,当点P为费马点时,距离之和最小.假设A,B,C表示三个村庄,要选一处建车站,使车站到三个村庄的公路路程的和最短.若不考虑其他因素,那么车站应建在费马点上.请按下列步骤对费马点进行探究:(1)查找有关资料,了解费马点被发现的历史背景;(2)在特殊三角形中寻找并验证费马点.例如,当△ABC是等边三角形,等腰三角形或直角三角形时,费马点有哪些性质?(3)把你的探究结果写成一篇小论文,并通过与同学交流来修改完善你的小论文.(课本)学有所成学有所成