预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

煤矿瓦斯抽采新技术一、引言二、井下瓦斯抽采钻孔施工技术及装备三、井下抽瓦斯提浓增量技术四、井下水力压裂增渗技术五、地面钻井抽采采动区瓦斯技术1、煤矿瓦斯抽采的意义是预防煤矿瓦斯事故的治本之策;是将瓦斯变为资源的重要途径是减少温室气体排放的重要内容2、煤矿瓦斯抽采存在的主要难题顺煤层抽瓦斯钻孔施工深度难以满足高效区域抽采的要求,使得大量采用抽瓦斯专用岩巷,工程成本高、施工时间长、产生大量废渣;缺乏长钻孔轨迹测定技术,使得抽瓦斯难均匀、易留事故隐患;井下钻孔施工存在风险,远程(或地面)操控成为趋势和难点;井下抽采的瓦斯浓度低,不利于安全抽采与输运,也给资源化利用带来困难;煤层透气性低,抽瓦斯效果较差,提高透气性和抽采效果是难题;地面井抽采动区瓦斯效果好,但易受采动破坏,提高其高效服务寿命是难题。1、适用于中硬较稳定煤岩层的水平定向复合钻进技术技术特点:钻机具有适应于不同施工空间条件的大功率整体式和分体式结构;最大输出转矩12000Nm,能满足不同规格钻具孔口回转、孔底马达回转和复合驱动三种定向钻进工艺的要求。2、适宜于松软突出煤岩层钻孔施工的高转速异形钻杆压风排渣钻孔技术问题:对f<0.8、尤其是f<0.5的松软煤层,钻进过程中孔壁变形严重,极易使钻杆抱死,深孔成孔困难,通常为40~60m,钻孔覆盖范围难以满足采掘前大面积区域预抽煤层瓦斯的要求。原因:钻孔壁变形大,钻孔缩径严重,沿程钻杆旋转过程中阻止旋转的阻力大。研制成具有高强度、可正反转、参数优化的宽叶片螺旋钻杆、三棱螺旋钻杆等异形钻杆,使钻杆在旋转过程中具有切削孔壁变形煤岩的功能,确保钻孔不缩径;同时螺旋钢带或螺旋槽的钻杆结构形成机械螺旋强力排渣的有利通道。研制成易破碎煤块的钻头,预防产生大块钻渣卡堵排渣通道。研制成回转钻机用的无磁随钻测斜技术,测定数据储存在测管的数据存储器内,待钻杆全部退出后将数据传输到电脑,并绘制钻孔轨迹,但难以实现随钻纠偏。无线测定技术的数据传输不受钻孔介质影响,在井下试验传输距离可达200m以上,依据测定的轨迹信息,可利用导向块等进行钻孔轨迹调向。松软煤层钻进技术现场应用,在淮南丁集矿f=0.28-0.4的煤层中钻孔26个,孔深200m以上的22个,200m以上孔深成孔率为84.6%;在淮南张集矿f=0.6-0.8的煤层中钻孔18个,孔深250m以上的14个,250m以上孔深成孔率77.8%。应用3、远控自动化钻孔技术减人是高安全、高效益生产的方向。利用传感和视频技术,将相关参数与现场视频通过安全监控的以太网传输到远控操作地点,操作人员在操作地点发出控制信号触发电动阀门控制液压油路的导通与关断、控制电机和泵组的启停。实现了自动装卸钻杆,自动调整钻机开孔位置、倾角、方位,自动移动钻机、固定钻机等。对固定程序的操作设计了一键远控的智能化操作。钻机采用履带车整体结构,远控点也可设置在地面。通过超声测距仪和云台摄像仪,实现远控钻机移机;通过压力、角度传感器等,实现锚固和倾角调节;采用抓取式自动装卸钻杆、输送钻杆和调整钻杆倾角(0~90°);钻杆箱通过滑轨实现换列;储存钻杆数量可根据需要调整;采用姿态仪确定开孔位置。远控自动化钻机采用原150钻机功率,在松藻煤电公司逢春煤矿进行了现场试验,采用地面远控方式共施工29个钻孔,总进尺3192m,其中150m以上钻孔3个,最深孔进尺167m,三、井下抽瓦斯提浓增量技术1.抽采高浓度瓦斯的方法尽可能不采用采空区埋管、插管抽瓦斯方法。应采用高冒带、裂隙带低负压抽采空区瓦斯工艺;尽可能选择卸压开采抽采邻近层瓦斯方法、预抽煤层瓦斯方法等。3.松软突出煤层钻孔下护孔筛管技术对松软突出煤层,钻孔不护孔会塌孔,钻孔被堵塞使瓦斯流动困难,降低了抽采瓦斯浓度。加工成大通孔钻杆以及带单向开启功能的钻头,钻孔到位后,从钻杆中心通孔插入带有大量筛眼的非金属护孔小管到孔底,钻杆退钻时护孔管鸡爪反刺入孔壁使其不会被带出。试验表明:该技术使钻孔抽瓦斯浓度可提高到60%以上,效果显著。4.管网故障诊断技术抽瓦斯管网有许多接头、管网可能破损,空气漏入负压管网使瓦斯浓度被稀释。负压管网内还可能吸入煤岩渣块等,管内低洼处易积水,会造成管路堵塞,影响抽瓦斯效果。管网故障诊断系统,监测管网内的流量、浓度、负压、温度等,分析判定管网泄漏、堵塞等故障区域,及时处理故障可显著提高抽瓦斯浓度和效果。增加煤层渗透率、提高预抽煤层瓦斯效果也是提高抽采煤层气浓度的一条有效途径。高压水力压裂在地面井得到大量应用,然而,对井下松软突出煤层水力压裂却没有取得显著效果。许多人认为水力压裂不适用于软煤。研究认为:松软突出煤层水力压裂呈现“微缝网循环延展塑性固化”增透机理,与通过原生裂纹脆性拉张破坏扩展成线裂纹的岩层增透机理不同。高压水浸润煤体,与应力、瓦斯共同作用使浸水煤体屈服并发