预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共32页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章统计与概率第18讲概率的应用要点梳理要点梳理频率与概率概率被我们用来表示一个事件发生的可能性的大小.如果一个事件是必然事件,它发生的概率就是1;如果一个事件是不可能事件,它发生的概率就是0;随机事件发生的概率通常大于0且小于1.对事件可能性大小的感觉通常来自观察这个事件发生的用频率估计概率谁也无法预测随机事件在每次试验中是否会发生,但是,在相同条件下,进行大量的试验后,事件出现的频率会逐渐稳定,稳定后的频率可以作为概率的估计值,反之,如果知道一个事件发生的概率,就可以由此推断:大量试验后该事件发生的频率接近其概率.需要注意的是:用试验的方法得出的频率只是概率估计值,要想得到近似程度比较高的概率估计值,通常需要大量的重复试验.概率的预测求一个事件的概率途径一般有三种:(1)是主观经验估计(又称主观概率);(2)是实验估计(又称实验概率);(3)是根据树状图或列表法分析预测概率(又称理论概率).1.(2014·黔东南州)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上2.(2014·山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率3.(2014·河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()45.(2014·河南)一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是____.计算等可能事件的概率【点评】本题可列举所有的情况,求出结果.1.(1)(2014·南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).(2)(2014·攀枝花)在一个不透明的口袋里装有分别标有数字-3,-1,0,2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.①从中任取一球,求抽取的数字为正数的概率;②从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2-2ax+a+3=0有实数根的概率;③从中任取一球,将球上的数字作为点的横坐标记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.解:用统计频率的方法估计概率【点评】本题每摸一次就相当于做了一次试验,因此大量重复的试验获取的频率可以估计概率.2.(1)(2012·贵阳)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6B.10C.18D.20(解:概率与统计综合题(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【点评】本题考查了折线统计图、扇形统计图和列表法与树状图法,解决本题的关键是从两种统计图中整理出解题的有关信息,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.概率=所求情况数与总情况数之比.3.(2014·襄阳)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全下面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树状图的方法求小明献给父母的粽子馅料不同的概率.