课件-全国-2017_(浙江专用)2017中考数学 专题六 阅读理解型问题复习课件.ppt
努力****绮亦
亲,该文档总共39页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
课件-全国-2017_(浙江专用)2017中考数学 专题六 阅读理解型问题复习课件.ppt
专题六阅读理解型问题阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题
课件-全国-2017_(浙江专用)2017中考数学 专题九 综合型问题复习课件.ppt
专题九综合型问题综合题,各地中考常常作为压轴题进行考查,这类题目难度大,考查知识多,解这类习题的关键就是善于利用几何图形的有关性质和代数的有关知识,并注意挖掘题目中的一些隐含条件,以达到解题目的.近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.值得注意的是,近年中考几何综合计算的呈现形式多样,如折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有实用性和创造性,在考查考生
课件-全国-2017_(浙江专用)2017中考数学 专题三 开放探究型问题复习课件.ppt
专题三开放探究型问题开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,
课件-全国-2017_(浙江专用)2017中考数学 专题八 运动型问题复习课件.ppt
专题八运动型问题所谓“运动型问题”是探究几何图形(点、直线、三角形、四边形)在运动变化过程中与图形相关的某些量(如角度、线段、周长、面积及相关的关系)的变化或其中存在的函数关系的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“运动型问题”题型繁多、题意创新,考查学生分析问题、解决问题的能力,是近几年中考题的热点和难点.在运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程.在变化中找到不变的性质是解决数学“运动型”探究题的基本思路,这也是动态几何数学问题
课件-江西-2017_江西省中考数学专题复习 专题二 阅读理解型问题课件.ppt
专题训练突破考点一阅读试题所提供的新定义、新定理,解决新问题[分析]先根据定义求出OA′,OB′的长,再作辅助线:连接点B与OA和⊙O的交点M,由已知∠BOA=60°判定△OB′M是等边三角形,从而在Rt△OB′A′中,由勾股定理求得A′B′的长.考点二阅读试题信息,归纳总结提炼数学思想方法我们的结论是:平面直角坐标系中,连接两点的线段的中点的横(纵)坐标等于这两点的横(纵)坐标的平均数.无论线段AB处于平面直角坐标系中的哪个位置,当其端点为A(a,b),B(c,d),AB的中点坐标为(x,y)时,x=_