预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1不等式的说明例1:n重贝努里试验中,已知每次试验事件A出现的概率为0.75,试利用契比雪夫不等式,(1)若n=7500,估计A出现的频率在0.74至0.76之间的概率至少有多大;(2)估计n,使A出现的频率在0.74至0.76之间的概率不小于0.90。随机变量序列依概率收敛的定义5大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意义,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率nA/n与概率p有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法就是第7章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。此外,定理中要求随机变量的方差存在,但当随机变量服从相同分布时,就不需要这一要求。例2:§2中心极限定理1112例4:设某种电器元件的寿命服从均值为100小时的指数分布,现随机取得16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。例5:某保险公司的老年人寿保险有1万人参加,每人每年交200元,若老人在该年内死亡,公司付给受益人1万元。设老年人死亡率为0.017,试求保险公司在一年内这项保险亏本的概率。例6:设某工厂有400台同类机器,各台机器发生故障的概率都是0.02,各台机器工作是相互独立的,试求机器出故障的台数不小于2的概率。例7: