ARCH与GARCH模型.docx
岚风****55
亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
ARCH与GARCH模型.docx
3.1ARCH与GARCH模型例自回归条件异方差模型3.1.1问题的提出对异方差误差分布的修正能够导致更加有效的参数估计。例如在回归方程(3.1.1)中的的方差可能与成正比,在这种情况下,我们可以使用加权最小二乘法,即令方程的两边同时除以变量,然后用普通最小二乘法估计变化后的回归方程(3.1.2)在有些应用场合下,可以认为误差项是随时间变化的并且依赖于过去的误差大小。通货膨胀以及股票市场收益都属于这种情形。在这些实际应用中,常常有大的误差与小的误差成群出现的情形,换句话说,存在着一种特殊的异方差形式,回归
ARCH与GARCH模型.docx
3.1ARCH与GARCH模型例自回归条件异方差模型3.1.1问题的提出对异方差误差分布的修正能够导致更加有效的参数估计。例如在回归方程(3.1.1)中的的方差可能与成正比,在这种情况下,我们可以使用加权最小二乘法,即令方程的两边同时除以变量,然后用普通最小二乘法估计变化后的回归方程(3.1.2)在有些应用场合下,可以认为误差项是随时间变化的并且依赖于过去的误差大小。通货膨胀以及股票市场收益都属于这种情形。在这些实际应用中,常常有大的误差与小的误差成群出现的情形,换句话说,存在着一种特殊的异方差形式,回归
ARCH与GARCH模型.docx
3.1ARCH与GARCH模型例自回归条件异方差模型3.1.1问题的提出对异方差误差分布的修正能够导致更加有效的参数估计。例如在回归方程(3.1.1)中的的方差可能与成正比在这种情况下我们可以使用加权最小二乘法即令方程的两边同时除以变量然后用普通最小二乘法估计变化后的回归方程(3.1.2)在有些应用场合下可以认为误差项是随时间变化的并且依赖于过去的误差大小。
ARCH与GARCH模型.docx
3.1ARCH与GARCH模型例自回归条件异方差模型3.1.1问题的提出对异方差误差分布的修正能够导致更加有效的参数估计。例如在回归方程(3.1.1)中的的方差可能与成正比,在这种情况下,我们可以使用加权最小二乘法,即令方程的两边同时除以变量,然后用普通最小二乘法估计变化后的回归方程(3.1.2)在有些应用场合下,可以认为误差项是随时间变化的并且依赖于过去的误差大小。通货膨胀以及股票市场收益都属于这种情形。在这些实际应用中,常常有大的误差与小的误差成群出现的情形,换句话说,
ARCH与GARCH模型.docx
3.1ARCH与GARCH模型例自回归条件异方差模型3.1.1问题的提出对异方差误差分布的修正能够导致更加有效的参数估计。例如在回归方程(3.1.1)中的的方差可能与成正比,在这种情况下,我们可以使用加权最小二乘法,即令方程的两边同时除以变量,然后用普通最小二乘法估计变化后的回归方程(3.1.2)在有些应用场合下,可以认为误差项是随时间变化的并且依赖于过去的误差大小。通货膨胀以及股票市场收益都属于这种情形。在这些实际应用中,常常有大的误差与小的误差成群出现的情形,换句话说,