预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第八章非参数密度估计8.1非参数密度估计推广直方图的密度函数定义。X∈Rd8.2核密度估计核密度估计的定义常用核函数以高斯核函数为例以高斯核函数为例带宽对估计量的影响Parzen窗函数为核函数当带宽h=0.2时,密度函数曲线比较粗糙,噪声很多;当带宽h=1时,密度函数曲线比较平滑,较为理想;而带宽h=5时,密度函数曲线最平滑的,但信息损失很多;如何选择合适的带宽,是核函数密度估计的关键.均方误差模式分类问题1.假设ω1——鲑鱼,ω2——鲈鱼,它们的先验概率为:分类问题分类问题k-近邻估计程序实现程序实现图形显示图形显示k-近邻估计k-近邻估计应用于分类k-近邻估计方法分类k-近邻估计方法分类二维情形的程序