预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

18用心爱心专心2011中考冲刺数学专题12——方案设计问题【备考点睛】方案设计问题是指解决问题的方案决策问题。同一个问题往往有多种不同的解决方案,但其中最科学、合理的方案常常仅有一种。随着课程改革的全面展开和逐步深化,有利于考察学生创新意识和实践能力的方案设计问题已经成为中考命题的一大热点.方案设计问题大多取材于生活背景,富有浓厚的生活气息,能够让学生充分体验数学知识的应用价值,有利于激发学生学习数学的乐趣和学好数学的动力,因此,这类问题必然在中考中盛久不衰,它的出现改变了学生以往只依赖于模仿和记忆的“重结果,轻过程”的学习方式,有利于培养学生重视动手操作和实践活动,更为重要的是能够让学生养成用数学的意识。【经典例题】类型一利用不等式进行设计例题1(2010福建德化)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.甲乙进价(元/件)1535售价(元/件)2045解答:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意,得解得:答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160-a相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.例题2整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?解答:(1)设甲种药品的出厂价格为每盒x元,乙种药品的出厂价格为每盒y元.则根据题意列方程组得:解之得:5×3.6-2.2=18-2.2=15.8(元)6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元(2)设购进甲药品x箱(x为非负整数),购进乙药品(100-x)箱,则根据题意列不等式组得:解之得:则x可取:58,59,60,此时100-x的值分别是:42,41,40有3种方案供选择:第一种方案,甲药品购买58箱,乙药品购买42箱;第二种方案,甲药品购买59箱,乙药品购买41箱;第三种方案,甲药品购买60箱,乙药品购买40箱;类型二利用二次函数进行设计例题3(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.解答:(1)14057500;(2)w内=x(y-20)-62500=x2+130x,w外=x2+(150)x.(3)当x==6500时,w内最大;分由题意得,解得a1=30,a2=270(不合题意,舍去).所以a=30.(4)当x=5000时,w内=337500,w外=.若w内<w外,则a<