预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心圆的有关概念与性质◆课前热身1.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E则下列说法错误的是()A.AD=BDB.∠ACB=∠AOEC.D.OD=DE2.如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是()A.B.C.D.3.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5B.4C.3D.24.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2B.3C.4D.55.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A.B.C.D.【参考答案】DDAAB◆考点聚焦1.圆的有关概念,包括圆心、半径、弦、弧等概念,这是本节的重点之一.2.掌握并灵活运用垂径定理及推论,圆心角、弧、弦、弦心距间的关系定理以及圆周角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是本节难点.3.理解并掌握圆内接四边形的相关知识,而圆和三角形、四边形等结合的题型也是中考热点.◆备考兵法“垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题.常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现;垂径定理和勾股定理结合起来常以计算题出现.◆考点链接1.圆上各点到圆心的距离都等于.2.圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3.垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5.同弧或等弧所对的圆周角,都等于它所对的圆心角的.6.直径所对的圆周角是,90°所对的弦是.◆典例精析例1(2009山西太原)如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A.B.5C.D.6BCDA【答案】A【解析】本题考查圆中的有关性质,连接CD,∵∠C=90°,D是AB中点,AB=10,∴CD=AB=5,∴BC=5,根据勾股定理得AC=,故选A.例2(2009年黑龙江哈尔滨)如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.【答案】8【解析】主要利用垂径定理求解.连接OA,根据垂径定理可知AM=4,又OA=5,则根据勾股定理可得:OM=3。又OD=5,则DM=8.例3(2008年贵州贵阳)如图,已知AB是⊙O的直径,点C在⊙O上,且AB=13,BC=5.(1)求sin∠BAC的值;(2)如果OD⊥AC,垂足为点D,求AD的长;(3)求图中阴影部分的面积.(精确到0.1)【答案】解:(1)∵AB是⊙O的直径,∴∠ACB=90°.∴sin∠BAC=.(2)在Rt△ABC中,AC==12.又∵OD⊥AC于点D,∴AD=AC=6.(3)∵S半圆=×()2=×=.S△ABC=AC×BC=×12×5=30,∴S阴影=S半圆-S△ABC=-30≈36.3点评“直径所对的圆周角为90°”以及“垂径定理”可以将圆的有关知识和三角形有关知识结合起来.因此对这部分知识应加以重视.◆迎考精练一、选择题1.(2009年湖北孝感)如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15°B.30°C.45°D.60°2.(2009年山东泰安)如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°3.(2009年浙江嘉兴)如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为,则弦AB的长为()A.3B.4C.6D.94.(2009年天津市)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A.28°B.56°C.60°D.62°5.(2009年安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2B.3C.4D.56.(2009年浙江温州)如图,∠AOB是⊙0的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()A.40°B.45°C.50°D.80°7.(2009年四川遂宁)如图,已知⊙O的两条弦AC,BD相交于点E,∠A=70