预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2第一页答卷编号:论文题目:风电功率波动特性的分析——从一个风电场入手姓名专业、班级有效联系电话参赛队员1刘江2012级化学工程与工艺18394167693参赛队员2韩治国2011级数学与应用数学18298359760参赛队员3黎秀青2012级计算机科学与技术18394517128指导教师:参赛学校:西北民族大学证书邮寄地址及收件人:甘肃省兰州市榆中县西北民族大学榆中校区刘江收第二页答卷编号:阅卷专家1阅卷专家2阅卷专家3论文等级14风电功率波动特性的分析——从一个风电场入手摘要本文主要使用特定时间、特定数量的风电机组功率统计对该区域风电机组未来几天的风电场总功率做出预测。首先,我们采用了概率统计和假设检验的方法确定出功率分布所符合的分布函数,然后以此为基础,采用回归分析、多项式拟合函数等方法对一定数量的风电机组在特定的时间段内的功率分布做出统计分析,解决问题。第一问:我们采用图像对比,定值比较,回归分析等方法,分析出风电功率波动特性所符合的所有概率分布,然后根据实际数据进行参数估计,进一步确定出t分布为风电功率随时间变化的最佳分布,并用对应的检验方法进行了参数检验,然后比较了一个月内5个风电机组功率的产能和消耗。第二问:我们使用用第一问的结果,以分钟为单位,做出各个风机对应的拟合图像,分析了时间间隔为1分钟的数据序列变化拟合函数。第三问:分析问题一、问题二的拟合曲线和图像,由图2、图3可以看到,波动性相比图1的明显增大,在无风的条件下,由于电网的连通性,不但不会产生电功,相反还需要消耗一定的功率,但是在上述图像中看不到这种变化;除此之外,也不能明显的看出外界环境条件和总功率的调控信息。第四问:我们应用Matlab统计拟合出了20个风电机组在1m、5m、15m的总功率序列PΣm(tk),PΣ5m(tk),PΣ15m(tk)的函数图像以及变化趋势(如图9、11、13)然后用同样的方法分析其波动的概率分布数值特征以及波动对风电机组的影响。第五问:应用多项式拟合法和回规分析法建立功率模型,根据问题四中已经拟合出的PΣ5m(tk)和PΣ15m(tk)函数,画出对应的预测曲线,图像显示在前一段时间,功率均先增加后减小,但PΣ15m(tk)的变化趋势明显比较小,不能准确的说明某一天或者某段时间的风电厂总功率的变化,而且15分钟对于一个大的系统来说,一旦出现自然因素或者人为因素的影响,使得功率大幅度变化,影响到整个供电系统时,使得问题的发现和解决有了一定的延后,不利于应用于实际的系统进行总功率变化预测。第六问:对前面的图像做对比分析,看出一个风电机组的功率与总功率的变化有着显著地区别,任意一个风电机组的功率变化都不能说明总功率的变化情况,也不能反应外界的环境变化情况。根据概率分布特征,我们可以预测波动特性的一般规律,我们可以人为的避免低风速下的电量的消耗,达到总体效率最高,损失最少的运行模式。但是未考虑地域性和季节性的差异,也可能因为气候的转变和季节的变化而不适用,所以,存在地域上的局限性。第七问:由于风电不确定性、间歇性以及各机组间尾流的影响,对于任一风电机组短时间段的功率都是随机的,在无风的情况下,由于电网需要风电功率的传输与消纳,致使总功率很不稳定,呈(1)中的图像分布,通过统计分析可确定风电波动性呈现t分布。关键字风电机组拟合功率时间t分布问题重述随着资源环境约束的日趋严苛,以化石能源为主的能源发展模式必须根本转变。近年来,可再生能源开发的热潮遍及全球。我国已经规划了8个千万kW级的大型风电基地。截至2012年底,我国风电装机容量已超过7000万kW,居世界第1位。预计2020年全国风电装机容量将超过2.0亿kW。风电机组发出的功率主要与风速有关。由于风的不确定性、间歇性以及风电场内各机组间尾流的影响,使得风力发电机不能像常规发电机组那样根据对电能的需求来确定发电。大规模风电基地通常需接入电网来实现风电功率的传输与消纳。风电功率的随机波动被认为是对电网带来不利影响的主要因素。研究风电功率的波动特性,不论对改善风电预测精度还是克服风电接入对电网的不利影响都有重要意义。风电场通常有几十台、上百台风电机组。大型风电基地由数十甚至上百个风电场组成。因此,风电功率的波动有很强的时空差异性。附件给出了某风电场中20台1.5MW风电机组30天的风电功率数据(单位为kW,间隔为5s),请做如下分析。1.任选5个风电机组:a)在30天的范围内,分析机组i的风电功率Pi5s(tk)波动符合哪几种概率分布?分别计算数值特征并进行检验,推荐最好的分布并说明理由。比较5个机组分布的异同。b)用以上确定的最好的概率分布,以每日为时间窗宽,对5个风电功率分别计算30个时段的概率分布参数并做出检验;试比较不同机组(空间)、不同时段(时间)风电功率波动的概率分布以及