预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

回归分析方法总结全面一、什么是回归分析回归分析(regressionanalysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。二、回归分析的种类1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。三、回归分析的主要内容1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。3.计算估计标准误差。通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。四、一元线性回归分析1.一元线性回归分析的特点1)两个变量不是对等关系,必须明确自变量和因变量。2)如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。若绘出图形,则是两条斜率不同的回归直线。3)直线回归方程中,回归系数b可以是正值,也可以是负值。若0b>,表示直线上升,说明两个变量同方向变动;若0b0时,表示x与y为正相关;当r