图像语义分割方法和装置、神经网络训练方法和装置.pdf
Ja****44
亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
图像语义分割方法和装置、神经网络训练方法和装置.pdf
本公开提供了一种基于神经网络的图像语义分割方法和装置、用于图像语义分割的神经网络的训练方法和装置、以及计算机可读存储介质。所述神经网络包括输入层、中间层和输出层。所述图像语义分割方法包括:获取待分割的图像;经由所述输入层输入所述图像;经由所述中间层中级联的多个计算节点中的每个计算节点的卷积层对输入的数据执行卷积计算以获得中间表示,并对获得的所述中间表示执行二值化处理;以及经由所述输出层输出所述图像的热力图,所述热力图表示所述图像中每个像素所属的语义类别。
语义分割模型训练方法及装置、图像语义分割方法及装置.pdf
本公开提供了一种语义分割模型训练方法、图像语义分割方法、语义分割模型训练装置、图像语义分割装置、电子设备和计算机可读存储介质,其中语义分割模型训练方法包括:获取训练集,训练集包括图像以及对应的标注信息;将图像进行特征提取,得到图像的特征数据;基于特征数据,得到第一分割框信息以及第一语义分割信息;基于特征数据、第一分割框信息以及第一语义分割信息,得到图像的第二分割框信息以及第二语义分割信息;基于第二分割框信息与标注信息、和/或基于第二语义分割信息与标注信息,确定损失值;基于损失值,调整语义分割模型的参数。语
语义分割方法和语义分割装置.pdf
本申请提供了一种语义分割方法和语义分割装置,有利于提高语义分割结果准确率。该方法包括:获取目标图像,该目标图像包括航拍得到的RGB图像和深度图像,该深度图像是根据该RGB图像确定的;将该目标图像输入至语义分割网络,通过该语义分割网络对该目标图像进行特征提取,获取该目标图像的深度信息和语义信息,该特征提取包括细节特征提取、边缘特征提取、深度特征提取以及上下文特征提取;通过该语义分割网络对该深度信息和该语义信息进行特征融合,得到该目标图像的语义分割图像。
神经网络的训练、图像语义分割方法及装置.pdf
本公开提供了一种神经网络的训练、图像语义分割、智能设备控制方法、装置、电子设备及存储介质,其中,该神经网络的训练方法包括:基于前一轮训练完成的神经网络确定第一图像样本的伪标注语义类别信息;根据有伪标注语义类别信息的第一图像样本、以及有标注语义类别信息的第二图像样本,对前一轮完成的神经网络进行本轮训练,得到本轮训练后的神经网络;重复执行上述步骤,直到满足训练截止条件,得到训练完成的神经网络。上述方案利用加入了部分未标注的图像样本实现自训练学习,降低了人工成本,提升了神经网络训练的效率。
半监督语义分割模型训练方法、识别方法和装置.pdf
本说明书实施例提供了半监督语义分割模型训练方法、识别方法和装置,根据实施例的半监督语义分割模型训练方法,首先通过获取人工对第一图像中的待标注对象进行标注后得到的第一监督数据,进而通过第一监督数据训练得到对待标注对象的识别率相对较高的全监督语义分割模型。利用全监督语义分割模型对未经过人工标注的第二图像中的待标注对象进行标注,得到第二监督数据。再利用经过人工标注得到的第一监督数据和经过全监督语义分割模型标注得到的第二监督数据训练半监督语义分割模型,并利用半监督语义分割模型对第一图像、第二图像和随机扰动项进行识