基于生成对抗网络的双耳销钉缺陷样本的生成方法及装置.pdf
俊凤****bb
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于生成对抗网络的双耳销钉缺陷样本的生成方法及装置.pdf
本发明公开了一种基于生成对抗网络的双耳销钉缺陷样本的生成方法及装置,其中该方法包括:采集双耳销钉样本图像,得到双耳销钉样本图像数据集;双耳销钉样本图像数据集包括正常样本图像及缺陷样本图像数据集;使用双耳销钉样本图像数据集训练CycleGAN模型,得到成对样本图像数据集;成对样本图像包括:正常样本图像及对应生成的缺陷样本图像;使用成对样本图像数据集,训练Pix2Pix网络模型,得到基于生成对抗网络的双耳销钉缺陷样本。本发明结合多种生成对抗网络模型特点,能通过处理正常样本有效地生成对应效果逼真的缺陷样本图像,
利用对抗生成网络生成对抗样本的方法及装置.pdf
本说明书实施例提供一种利用对抗生成网络生成对抗样本的方法,其中对抗生成网络包括:预先训练好的、用于针对业务对象执行N分类任务的分类器,用于生成对应于各类别真实样本的模拟样本的生成器,以及对应于N个类别的N个判别器,其中第i个判别器用于判别输入其中的样本是否属于第i个类别下的真实样本。在该方法中,可以实现对生成器和判别器的训练,进而利用其中训练好的生成器生成具有指定真实类别,但会被上述分类器预测为其他类别的对抗样本,同时,可以实现高效、快捷地生成大批量的优质对抗样本。
基于生成对抗网络的黑盒恶意软件检测对抗样本生成方法及装置.pdf
本发明公开了一种基于生成对抗网络的黑盒恶意软件检测对抗样本生成方法及装置,方法包括下述步骤:根据PE文件结构特性设计基于集成策略的恶意软件对抗性扰动方法,该扰动方法添加扰动的方式为:修改DOS头、节区末尾填充、文件末尾填充;构建基于生成对抗网络的黑盒恶意软件对抗样本生成模型;在模型攻击过程中,输入恶意软件到黑盒恶意软件对抗样本生成模型,利用训练过的生成器模型G在很短的时间内生成对抗性样本。本发明添加对抗性扰动到恶意软件的非功能区域,从而实现了保留恶意功能和样本的真实性,这样不仅可以省去检验恶意软件样本在沙
基于生成对抗网络的缺陷检测数据生成、检测方法及系统.pdf
本发明公开了基于生成对抗网络的缺陷检测数据生成、检测方法及系统,该方法包括:获取目标对象的图像及缺陷标签;进而训练分类模型用于输出缺陷标签;再构建基于高斯模型组的生成对抗网络模型,并对生成器和判别器进行交替式训练。其中,生成器的第2‑N个全连接层分别连接一组高斯模型,即将每一组高斯模型采样的缺陷向量和对应高斯模型的系数乘积,与对应全连接层的权重系数进行线性运算;最后将目标对象的图像的像素网格坐标输入训练好的生成对抗网络模型,通过控制高斯模型组的系数生成各类缺陷图像。本发明通过上述方法生成大量具有用户所需缺
基于生成对抗网络的遥感样本生成方法.docx
基于生成对抗网络的遥感样本生成方法随着遥感技术的不断发展,遥感数据已成为地球科学研究和环境监测等领域不可或缺的一种数据源。然而,由于遥感数据的特殊性,数据获取和处理仍然需要耗费大量的资源和时间。因此,如何有效地利用遥感数据并提高其有效性是解决当今问题的关键。生成对抗网络(GAN)通过学习一个生成器和一个判别器,可以生成出与真实数据类似的“假”数据。因此,基于生成对抗网络的遥感样本生成方法可以在一定程度上解决遥感数据获取和处理方面的难题。本文将介绍基于生成对抗网络的遥感样本生成方法及其应用。1.生成对抗网络