预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN112131393A(43)申请公布日2020.12.25(21)申请号202010799407.0G06F40/284(2020.01)(22)申请日2020.08.11G06F40/295(2020.01)G06N3/04(2006.01)(71)申请人淮阴工学院G06N3/08(2006.01)地址223005江苏省淮安市经济技术开发区枚乘东路1号(72)发明人朱全银孙强高尚兵万瑾倪金霆朱亚飞季睿陈凌云(74)专利代理机构南京苏高专利商标事务所(普通合伙)32204代理人梁耀文(51)Int.Cl.G06F16/36(2019.01)G06F16/35(2019.01)G06F16/951(2019.01)G06F40/205(2020.01)权利要求书4页说明书13页附图7页(54)发明名称一种基于BERT和相似度算法的医疗知识图谱问答系统构建方法(57)摘要发明公开了一种基于BERT和相似度算法的医疗知识图谱问答系统构建方法,包括:利用Python爬虫爬取网络公开医疗百科信息,存储至图数据库Neo4j中,构造医疗知识图谱;对公开的医疗问答数据集进行数据处理,利用CNN‑BiLSTM‑CRF算法实现命名实体识别;通过BERT‑TextCNN算法实现关系抽取;匹配预设定的问题查询语句;利用TF‑IDF算法对医疗问答数据集建立相似度模型。用户输入医疗相关关键字或语句调用算法获取相关医疗实体数据和相似病历回答,将查询数据返还WEB应用程序。本发明通过ECharts渲染医疗实体属性数据和实体间关系数据,实现医疗实体关系可视化以及医疗自动问答系统。CN112131393ACN112131393A权利要求书1/4页1.一种基于BERT和相似度算法的医疗知识图谱问答系统构建方法,其特征在于,具体步骤如下:(1)通过爬虫爬取医疗百科信息,导入Neo4j构建知识图谱G;对医疗问答公开数据集D进行序列标注和分类打标签,构造命名实体识别实验数据集NER_DATA和关系抽取实验数据集CLASSIFY_DATA;(2)搭建CNN-BiLSTM-CRF神经网络算法,输入NER_DATA进行命名实体识别实验,训练神经网络,保存模型NER_MODEL;(3)搭建BERT-TextCNN神经网络算法,输入CLASSIFY_DATA进行关系抽取实验,训练神经网络,保存模型CLASSIFY_MODEL;(4)根据关系抽取分类设定模板匹配的问题查询语句,对输入问句SEQ进行命名实体识别和关系抽取,匹配问题模板,查询Neo4j得到结果ANS;(5)通过对输入问句SEQ与公开数据集D进行相似度分析,利用余弦相似度计算出最相似的病例,得到结果REC;(6)开放Neo4j图数据库接口API和相似病历推荐系统接口API,对用户输入医疗相关关键字或语句调用算法获取相关医疗实体数据ANS和相似病历回答REC,将查询数据返还WEB应用程序;通过ECharts渲染医疗实体属性数据和实体间关系数据,实现医疗实体关系可视化以及医疗自动问答系统。2.根据权利要求1所述的一种基于BERT和相似度算法的医疗知识图谱问答系统构建方法,其特征在于,所述步骤(1)中构造命名实体识别实验数据集NER_DATA和关系抽取实验数据集CLASSIFY_DATA的具体步骤如下:(1.1)进行数据爬虫,选择爬虫网站;(1.2)确定爬取页面;(1.3)利用urllib模拟访问医疗百科网站,获取html信息;(1.4)利用etree解析html实体,其中,包括药品信息drugs_info、食物foods_info、检查checks_info、科室departments_info、生产商producers_info、疾病diseases_info和症状symptoms_info等分类信息;构造实体信息与属性项basic_info={drugs_info,foods_info,checks_info,departments_info,producers_info,diseases_info,symptoms_info,disease_infos};(1.5)定义疾病与忌吃食物关系为rels_noteat,疾病与宜吃食物关系为rels_doeat,疾病与推荐药品关系为rels_commonddrug,疾病与检查关系为rels_check,厂商与药物关系为rels_drug_producer,疾病与症状关系为rels_symptom,疾病与相关疾病并发关系为rels_acompany,疾病与科室之间的关系为rels_category。构造实体关系项rels={rels_noteat,rels_doeat,rels_commonddrug,