声纹识别模型的训练方法、装置、电子设备及存储介质.pdf
秀华****魔王
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
声纹识别模型的训练方法、装置、电子设备及存储介质.pdf
本发明公开了一种声纹识别模型的训练方法、装置、电子设备及存储介质,所述方法包括:获取一个训练集,训练集中包括用户的音频数据;将训练集中各音频数据对应的声学特征向量分别输入声纹识别模型,得到训练集中每个音频数据对应的声纹特征向量和预测概率分布;根据训练集中每个音频数据对应的预测概率分布和每个音频数据对应的真实概率分布,计算交叉熵损失;根据训练集中每个音频数据对应的声纹特征向量和用户标识对应的参考声纹特征向量,计算中心损失;根据交叉熵损失和中心损失,更新声纹识别模型的模型参数。本发明实施例的技术方案,能够同时
模型训练方法、装置、电子设备及存储介质.pdf
本申请提供一种模型训练方法和装置,该方法包括:获取原始数据集和多个样本集;获取每个样本集中的训练节点关系图以及训练节点及其邻接节点的训练特征向量作为输入值;将输入值输入多层感知器,并利用多层感知器卷积公式聚合,使得在第k次聚合中利用每个训练节点及其邻接节点在第k?1次聚合得到的向量表示,获得每个训练节点在第k次聚合后的向量表示,并且将预定次数聚合后的向量表示输出为每个训练节点的输出值;针对每个样本集,利用输入值和输出值进行模型修正,获得每个样本集的子模型;以及对子模型进行模型融合以获得图神经网络模型。本申
模型训练方法、装置、电子设备及存储介质.pdf
本申请提供一种模型训练方法和装置,该方法包括:获取原始数据集和多个样本集;获取每个样本集中的训练节点关系图以及训练节点及其邻接节点的训练特征向量作为输入值;将输入值输入多层感知器,并利用多层感知器卷积公式聚合,使得在第k次聚合中利用每个训练节点及其邻接节点在第k?1次聚合得到的向量表示,获得每个训练节点在第k次聚合后的向量表示,并且将预定次数聚合后的向量表示输出为每个训练节点的输出值;针对每个样本集,利用输入值和输出值进行模型修正,获得每个样本集的子模型;以及对子模型进行模型融合以获得图神经网络模型。本申
模型训练方法、装置、电子设备及存储介质.pdf
本公开提供了一种模型训练方法、装置、电子设备及存储介质,涉及人工智能领域,尤其涉及神经网络、大数据等技术领域。具体实现方案为:将视频样本输入待训练的多模态特征提取模型,得到视频特征和文本特征;采用同一视频样本的视频特征和文本特征构建正样本,不同视频样本的视频特征和文本特征构建负样本;基于正负样本训练多模态特征提取模型的;进而采用已训练的多模态特征提取模型提取视频特征和文本特征;采用文本特征和视频特征的融合特征微调目标任务的网络模型。本公开实施例中自动标注出正负样本,能够支持采用海量数据训练多模态特征提取模
模型训练方法、装置、电子设备及存储介质.pdf
本发明公开了一种模型训练方法、装置、电子设备及存储介质,该方法包括:接收筛选命令对预设数据库中存储的原始数据集进行筛选,得到多个目标数据集;原始数据集中包含元数据和资源数据,元数据用于在存储所述资源数据时作为引用信息及标注集以指向对应的资源数据;将多个所述目标数据集按照预设策略进行合并,并根据合并结果确定出结果数据集;利用所述结果数据集对待训练模型进行训练,并在满足预设终止条件时,终止训练输出所述模型。使用户不需要对数据集格式进行修改,提升了数据集的整体可用性以及可靠性,提升产出数据模型的效率,使数据模型