基于哈里斯鹰优化算法的电动汽车路径规划方法.pdf
猫巷****正德
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于哈里斯鹰优化算法的电动汽车路径规划方法.pdf
本发明公开了基于哈里斯鹰优化算法的电动汽车路径规划方法。传统方法需要调节的参数较多。本发明方法具体步骤是:搜索空间每一维的上界和下界,初始化每一个哈里斯鹰个体;选择适应度最小的哈里斯鹰个体为当前猎物位置;根据猎物逃逸能量执行搜索阶段和开发阶段,进行位置更新;如果位置更新后个体适应度小于猎物适应度,则以适应度值最小的个体位置作为新的猎物位置,否则当前猎物位置不变;达到设定最大迭代次数后,输出当前猎物位置作为目标的估计位置,当前猎物路径作为电动汽车路径规划的最短路径。本发明方法具有全局搜索能力强的优点,需要调
基于改进哈里斯鹰优化算法的压力容器结构优化方法.pdf
本发明提出了一种基于改进哈里斯鹰优化算法的压力容器结构优化方法,其步骤如下:首先,通过对于压力容器的数学建模,确定影响压力容器结构性能的各个变量以及变化范围,建立压力容器结构优化的目标函数;然后,利用改进的哈里斯鹰优化算法对目标函数进行优化,得到压力容器结构的各个变量的最优值。本发明将自适应合作觅食策略嵌入到一维位置更新框架中,根据转换因子自适应地选择一维更新操作和传统的全维更新操作,有效地提高了算法的种群多样性;又通过分散觅食策略,将部分哈里斯鹰个体随机地分散到其他区域觅食,避免算法陷入局部最优;本发明
基于改进哈里斯鹰算法的特征选择方法.pdf
本发明公开了基于改进哈里斯鹰算法的特征选择方法,包括:随机构造初始的特征子集;通过改进哈里斯鹰优化算法对所述特征子集进行迭代寻优;利用目标函数获取哈里斯鹰特征子集的适应度,并确定其个体最优与全局最优;根据所述全局最优输出特征子集。本发明其将二阶分类错误率与特征子集长度的加权作为评估函数,通过改进哈里斯鹰优化算法迭代寻优,筛选出质量较佳的特征子集。
基于改进哈里斯鹰算法的SVM与特征选择同步优化.docx
基于改进哈里斯鹰算法的SVM与特征选择同步优化基于改进哈里斯鹰算法的SVM与特征选择同步优化摘要:随着数据的不断增长和特征的不断膨胀,传统的支持向量机(SupportVectorMachines,SVM)在处理高维数据时遇到了诸多挑战,如计算复杂度高、特征冗余、模型泛化能力下降等问题。为此,本文提出了一种基于改进哈里斯鹰算法的SVM与特征选择同步优化的方法。首先,利用哈里斯鹰算法对原始特征进行选择,减少特征空间的维度;然后,将选择后的特征输入到SVM模型中以构建分类器。实验结果表明,所提出的方法在处理高维
一种基于改进哈里斯鹰优化算法的光伏电池参数辨识方法.pdf
本发明涉及一种基于改进哈里斯鹰优化算法的光伏电池参数辨识方法,具体包括:1、采集和处理光伏电池的输出电流、电压数据;2、建立光伏电池的工程模型,并构造适应度函数;3、引入柔性递减策略改进猎物初始能量递减方式;4、利用黄金正弦法优化当前种群,引入黄金分割数,并从中筛选出适应度最优个体组建新的种群进入下一步迭代;5、根据种群中个体携带的参数信息计算适应度值,直到猎物的适应度值达到精度要求或达到最大迭代次数后停止,输出猎物的参数信息作为最优的光伏电池参数值并绘制拟合曲线和算法迭代曲线,并对比光伏电池的电流、电压