结合残差卷积结构和循环神经网络的乐谱图像识别方法.pdf
运升****魔王
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
结合残差卷积结构和循环神经网络的乐谱图像识别方法.pdf
本发明涉及一种基于残差结构卷积神经网络和循环神经网络的乐谱图像识别方法,包括:1)建立乐谱图像的数据集;2)构建模型:将残差结构卷积神经网络和循环神经网络结合,构建深度学习网络模型,设置模型结构参数;3)训练模型:利用数据集对构建好的深度学习网络模型进行训练,深度学习网络模型输入为数据集中乐谱图像,真值标签为乐谱图像中各音符对应的语义信息,通过链式时序分类损失函数逐步调整网络各参数并达到最优,最终输出音符语义信息的预测值。
结合多尺度残差式CNN和SRU的乐谱图像识别方法.pdf
本发明涉及一种结合多尺度残差式CNN和SRU的乐谱图像识别方法,包括下列步骤:第一步,建立乐谱图像的数据集;第二步,构建模型:将多尺度残差式CNN和SRU结合;第三步,训练模型:利用数据增强后的数据集进行模型训练,模型输入为数据集中的乐谱图像,真值标签为图像对应的语义标签,通过链式时序分类损失函数逐步调整网络各参数并达到最优,最终输出音符语义信息的预测值。
基于循环残差卷积神经网络的医学图像分割算法.docx
基于循环残差卷积神经网络的医学图像分割算法基于循环残差卷积神经网络的医学图像分割算法摘要:医学图像分割是医学影像处理中的一个重要任务,用于帮助医生准确地分析诊断疾病。然而,医学图像的复杂性和高噪声性质使得传统的图像分割方法难以取得令人满意的结果。近年来,卷积神经网络(CNN)在图像识别和分割领域取得了显著的进展。本文提出了一种基于循环残差卷积神经网络的医学图像分割算法,通过引入循环残差模块,提高了网络的表达能力和性能。关键词:医学图像分割;卷积神经网络;循环残差;表达能力;性能1.引言医学图像分割是医学影
结合残差密集块的卷积神经网络图像去噪方法.docx
结合残差密集块的卷积神经网络图像去噪方法图像去噪一直是计算机视觉领域中的一个重要问题,因为图像在采集、传输和处理过程中会受到噪声的影响,从而导致图像质量下降。针对这一问题,许多图像去噪方法已经被提出,包括基于滤波器的方法、基于波尔茨曼机的方法以及基于深度学习的方法。而本篇论文将重点介绍一种基于残差密集块的卷积神经网络图像去噪方法。首先,我们来介绍一下残差密集块。残差密集块是一种具有很深网络结构的块,其中每个卷积层的输出都会与输入相加。这种设计可以有效地减轻梯度消失的问题,并增强信息在网络中的传递。此外,为
基于残差的改进卷积神经网络图像分类算法.docx
基于残差的改进卷积神经网络图像分类算法基于残差的改进卷积神经网络图像分类算法摘要:卷积神经网络(CNN)是近年来在图像分类任务中取得巨大成功的关键技术之一。然而,传统的CNN存在着梯度消失和梯度爆炸等问题,这些问题会导致网络深度增加时模型性能的下降。为了解决这些问题,残差网络(ResNet)提出了一个全新的思路,通过引入残差块来学习网络中的恒等映射,以提高网络的深度和性能。然而,原始的ResNet存在着计算量大和参数量多的问题,这限制了其在实际应用中的使用。因此,对ResNet的改进成为迫切需要的任务。本