预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN105740771A(43)申请公布日2016.07.06(21)申请号201610046348.3(22)申请日2016.01.22(71)申请人张健敏地址315200浙江省宁波市镇海区隧道北路555号(72)发明人张健敏(74)专利代理机构北京高航知识产权代理有限公司11530代理人丁艳侠(51)Int.Cl.G06K9/00(2006.01)G06K9/54(2006.01)G06K9/62(2006.01)权利要求书3页说明书16页附图2页(54)发明名称一种具有目标识别功能的推土装置(57)摘要本发明公开了一种具有目标识别功能的推土装置,包括推土机和安装在推土机上的监控装置,监控装置具体包括预处理模块、检测跟踪模块、识别输出模块,其中预处理模块包含图像转化、图像滤波、图像增强三个子模块,检测跟踪模块包含构建、丢失判别、更新三个子模块。本推土机将视频图像技术运用在推土机上,能有效监控记录恶意破坏行为,具有实时性好、定位准确、自适应能力强、图像细节保留完整和鲁棒性强等优点。CN105740771ACN105740771A权利要求书1/3页1.一种具有目标识别功能的推土装置,包括推土机和安装在推土机上的监测装置,监测装置用于对推土机附近的活动进行视频图像监测,其特征是,监测装置包括预处理模块、检测跟踪模块、识别输出模块;(1)预处理模块,用于对接收到的图像进行预处理,具体包括图像转化子模块、图像滤波子模块和图像增强子模块:图像转化子模块,用于将彩色图像转化为灰度图像:其中,R(x,y)、G(x,y)、B(x,y)分别代表像素(x,y)处的红绿蓝强度值,H(x,y)代表坐标(x,y)处的像素灰度值;图像大小为m×n;图像滤波子模块,用于对灰度图像进行滤波:采用维纳滤波来进行一级滤除后,定义svlm图像,记为Msvlm(x,y),具体定义公式为:Msvlm(x,y)=a1J1(x,y)+a2J2(x,y)+a3J3(x,y)+a4J4(x,y),其中a1、a2、a3、a4为可变权值,i=1,2,3,4;J(x,y)为经滤波后的图像;图像增强子模块:当时,其中,L(x,y)为增强后的灰度值;ψ(x,y)是包含有局部信息的伽马校正系数,此时α是范围为0到1的可变参数,ω为模板尺度大小参量,尺度越大则模板中包含的邻域像素信息就越多,输入图像经过不同尺度ωi的模板,得到的图像Ji将会包含不同范围的邻域信息;当且ω>50时,其中mH是图像中灰度值高于128的所有像素的均值,mL是灰度值低于128的所有像素的均值,且此时m=min(mH,mL),在α值已知的情况下,计算出256个ψ校正系数作为查找表,记为其中i为索引值,利用Msvlm(x,y)的灰度值作为索引,根据ψ(x,y)=ψα(Msvlm(x,y))快速获得图像中每个像素的伽马校正系数ψ(x,y);为模板修正系数;(2)检测跟踪模块,具体包括构建子模块、丢失判别子模块和更新子模块:构建子模块,用于视觉字典的构建:在初始帧获取跟踪目标的位置和尺度,在其周围选取正负样本训练跟踪器,将跟踪结T果作为训练集X={x1,x2,......xN};并对训练集中的每幅目标图像提取128维的SIFT特征2CN105740771A权利要求书2/3页其中St表示训练集中第t幅目标图像中SIFT特征的个数;跟踪N帧以后,通过聚类算法将这些特征划分为K个簇,每个簇的中心构成特征单词,记为能够提取到的特征总量其中K<<FN,且视觉字典构建好以后,每幅训练图像表示为特征包的形式,用于表示视觉字典中特征单词出现的频率,用直方图h(xt)表示,h(xt)通过以下方式获取:将一幅训练图像Xt中的每一个特征向视觉字典投影,用投影距离最短的特征单词表示该特征,对所有特征投影完毕后,统计每个特征单词的出现频率,并归一化得到训练图像Xt的特征直方图h(xt);丢失判别子模块,用于判别目标的丢失与否:当新一帧图像到来时,从K个直方图柱中随机选取Z<K个直方图柱,且Z=4,形成新的(z)大小为Z的子直方图h(xt),子直方图的个数最多为个;计算候选目标区域和训练集中某个目标区域对应子直方图的相似性Φt_z,其中t=1,2,...,N,z=1,2,...,Ns,然后计算总体相似性Φt=1-Πz(1-Φt_z);候选目标区域与目标的相似性用Φ=max{Φt,t}表示,则目标丢失判断式为:其中gs为人为设定的判失阀值;当u=1时目标被稳定跟踪,当u=0时,目标丢失;当目标丢失时,定义仿射变换模型:其中(xt,yt)和(xt-1,yt-1)分别为当前帧目标中某个SITF特征点的位置坐标和前一个帧目标中对应匹配特征点的位置坐标,两者均为已知量;s为尺度系数,θ