预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN107578008A(43)申请公布日2018.01.12(21)申请号201710782008.1(22)申请日2017.09.02(71)申请人吉林大学地址130012吉林省长春市前进大街2699号(72)发明人王世刚季映羽卢洋韦健赵岩(74)专利代理机构长春吉大专利代理有限责任公司22201代理人邵铭康朱世林(51)Int.Cl.G06K9/00(2006.01)G06K9/46(2006.01)G06K9/62(2006.01)权利要求书3页说明书7页附图4页(54)发明名称基于分块特征矩阵算法和SVM的疲劳状态检测方法(57)摘要基于分块特征矩阵算法和SVM的疲劳状态检测方法属图像处理和模式识别技术领域,本发明通过面部特征分析判断驾驶员是否处于疲劳状态,首先获取驾驶员视频图像,进行光照补偿和人脸区域检测;然后在人脸区域进行眼部和嘴部区域检测;本发明利用眼部分块特征矩阵算法对眼部图像进行特征提取,可降低光照条件、戴眼镜对检测的影响;利用嘴部分块特征矩阵算法对嘴部图像进行特征提取,可减少牙齿外露、嘴部留有胡须对检测的干扰;利用SVM算法对提取特征后的图像进行分类,在小样本训练集情况下提高可靠性;本发明结合眼部和嘴部疲劳特征分析,在检测到驾驶员处于疲劳状态时发出警告信息,可减少交通事故的发生。CN107578008ACN107578008A权利要求书1/3页1.一种基于分块特征矩阵算法和SVM的疲劳状态检测方法,其特征在于,提前构建训练样本图像库,所述训练样本图像库包括眼部训练集和嘴部训练集,眼部训练集特征向量由眼部分块特征矩阵算法计算而得,嘴部训练集特征向量由嘴部分块特征矩阵算法计算而得,所述疲劳状态检测方法包括下列步骤:1.1将获取的驾驶员视频流转化成帧图像;1.2用“参考白”算法对步骤1.1的帧图像进行光照补偿:将整个图像中所有像素的亮度值从高到低进行排列,取亮度值在前5%的像素,设置其RGB分量为255,其他像素的RGB分量值按比例线性调整;1.3检测人脸区域:对步骤1.2获取的光照补偿后的帧图像,利用ViolaJones人脸检测算法进行人脸检测,获取驾驶员面部区域;1.4检测眼部区域和状态分析:对步骤1.3获取的驾驶员面部区域,利用EyeMap算法检测眼部区域,获取人眼图像,然后利用眼部分块特征矩阵算法计算人眼图像的特征向量,由SVM分类器对图像进行分类,判断眼睛处于睁开还是闭合状态,具体包括下列步骤:1.4.1根据眼睛在人脸区域的分布特性,选取垂直方向的人脸二分之一到八分之七之间的区域,设为眼部ROI区域(A),并检测;1.4.2首先,将图像从RGB空间转换到YCrCb空间;其次,建立两个眼图,其中一个根据色度分量Cr和Cb,建立眼图EyeMapC,另一个根据亮度分量Y,建立眼图EyeMapL;最后,将这两个眼图相乘,建立眼图EyeMap;1.4.3通过OTSU算法获得最佳阈值T,将EyeMap灰度图像转换成二值图像,综合分析每个连通域的纵横比,位置等特点来排除非眼睛区域,最后保留一对连通域视为眼睛区域;1.4.4对获取的人眼图像,利用眼部分块特征矩阵算法计算出特征向量,将此特征向量输入SVM分类器,根据提前训练好的眼部图像样本库,对获取的人眼图像进行分类,判断此时人眼处于睁开还是闭合状态;1.5检测嘴部区域和状态分析:对步骤1.3获取的人脸图像,通过唇分割算法精确定位嘴部区域,然后利用嘴部分块特征矩阵算法对嘴部图像计算特征向量,由SVM分类器对图像进行分类,从而判断嘴部张开状态,具体包括下列步骤:1.5.1根据嘴部在人脸区域的分布特性,选取人脸垂直方向的下三分之一以下和水平方向的左四分之一至右四分之一之间的区域,设为嘴部ROI区域(B),并检测;1.5.2根据嘴唇和皮肤颜色之间的差异,对嘴部ROI区域(B)所有像素利用公式计算s值:其中:s代表唇色和肤色之间的差异值;R、G和B分别代表像素的红色分量、蓝色分量和绿色分量;对所有像素的s值进行从大到小排序,考虑到嘴唇区域s值比皮肤大,选取其中s值最大的N个像素视为嘴唇区域,N为ROI区域像素个数的20%,通过连通域分析,获取的嘴唇外接矩形区域为最终嘴部图像;1.5.3对获取的嘴部图像,利用嘴部分块特征矩阵算法计算出特征向量,将此特征向量输入SVM分类器,根据提前训练好的嘴部图像样本库,对获取的嘴部图像进行分类,判断此2CN107578008A权利要求书2/3页时嘴巴张开大小,是否达到打哈欠时的嘴巴张开程度,同时考虑当前帧嘴部图像与前后两帧图像的相似度;1.6建立疲劳状态评估模型:根据步骤1.4.4对眼睛睁闭状态进行判断,计算PERCLOS值,当PERCLOS值大于阈值时,说明驾驶员可能