一种基于迁移神经网络声学模型的语音识别系统及方法.pdf
努力****甲寅
亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于迁移神经网络声学模型的语音识别系统及方法.pdf
本发明涉及一种基于迁移神经网络声学模型的语音识别系统及方法,该系统包括:信号处理及特征提取模块、语言模型、解码器和迁移神经网络声学模型;其中迁移神经网络声学模型包括鲁棒神经网络和定向神经网络;本系统通过对鲁棒神经网络模型的模型参数进行固定,同时通过神经网络间的层间横向连接,将鲁棒声学模型的信息传递到目标声学模型中,不仅保留了原鲁棒声学模型的性能,同时还对目标语言做特定的优化。解决了低资源语言的鲁棒声学模型的快速构建的问题,通过利用数据充分的语言的声学模型进行模型参数迁移的方式,来提升目标低资源语言的声学模
一种基于神经网络模型的会议终端语音降噪方法.pdf
本发明提供一种基于神经网络模型的会议终端语音降噪方法,包括1、会议终端设备对音频文件进行采集,生成时域的数字音频信号;2、将数字音频信号分帧并进行短时傅里叶变换;3、将频域的幅度谱映射到频带中,进而求其梅尔倒谱系数;4、利用梅尔倒谱系数计算一阶和二阶差分系数,在每个频带上计算出基音相关系数,再提取基音周期特征和VAD特征;5、将音频的输入特征参数作为神经网络模型的输入,离线训练神经网络,使其学习到生成降噪语音的频带增益,训练好权重固化出来;6、使用神经网络模型学习后产生频带增益,将输出的频带增益映射到频谱
一种基于迁移学习的神经网络模型复用方法.pdf
本发明公开了一种基于迁移学习的神经网络模型复用方法。根据MMD(最大平均差异)来度量目标域与源域两个分布的相似性。再根据假设检验来判断目标域与源域的分布是否相同。若假设检验判断为两分布相同,则对深度神经网络模型进行finetune调整,实现深度神经网络模型的复用。
一种基于高维声学特征的语音识别方法及模型训练方法.pdf
本申请公开了一种基于高维声学特征的语音识别方法及模型训练方法,涉及语音识别技术领域。该方法包括:获取待识别音频;基于预先训练的声学特征提取模型,获取待识别音频对应的高维特征,作为待识别音频的高维声学特征;获取待识别音频对应的识别场景,作为目标识别场景;将高维声学特征输入至与目标识别场景对应的预先训练的语音识别模型,得到待识别音频对应的文本识别结果。如此,通过提取包含了更多有助于语音识别的特征信息,使得基于高维声学特征识别到的文本识别结果更准确,提高了语音识别的准确性;并且,调用与待识别音频的识别场景对应的
基于端到端模型的混合语音识别系统及方法.pdf
本发明涉及一种基于端到端模型的混合语音识别系统及方法,包括特征提取模块、语言模型、基于端到端模型的声学模型、解码器、词图重估模块以及输出模块。本发明采用声学语言端到端建模技术,对海量语音数据进行建模,并将端到端模型的编码网络作为声学模型,嵌入到混合语音识别系统中,不仅进一步提高了语音识别准确率,而且解决了纯端到端语音识别系统在项目中难以做定制化的问题。另外,本发明在端到端模型的编码网络的基础上,继续做鉴别性声学模型训练(SMBR、MPE等),可以进一步提高识别准确率。