一种基于超像素与模糊C均值聚类SAR图像分割方法.pdf
雨星****萌娃
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于超像素与模糊C均值聚类SAR图像分割方法.pdf
本发明公开了一种基于超像素与稀疏表示的模糊C均值聚类SAR图像分割方法,首先生成超像素,之后对图像中每一子区域提取灰度和纹理特征作为基础特征,并在稀疏表示理论基础上根据SAR图像不同地物类别散射特性差异提出稀疏自表示矩阵校正处理办法,以得到准确的判别特征,最终实现对SAR图像中相干斑噪声具有较强鲁棒性且运行效率高的图像分割处理;由于在超像素层面进行相应图像处理可在保留图像内部信息和边界信息的基础上,通过像素集合的整体性,减弱相干斑噪声的影响,同时通过整合相邻像素信息使提取的特征更为稳定。
基于模糊C均值聚类与超像素方法的脑部MR图像分割的中期报告.docx
基于模糊C均值聚类与超像素方法的脑部MR图像分割的中期报告中期报告1.研究背景和意义:随着医学成像技术的不断发展,脑部MR图像成为医学影像诊断中非常重要的一种成像方式。对脑部MR图像的自动分割、识别和分析可以为临床医生提供更加准确的诊断结果,从而为患者提供更好的治疗方案,因此脑部MR图像的分割技术对于临床应用具有非常重要的意义。然而,由于脑部MR图像具有复杂的结构和不同强度的噪声,传统的分割算法很难在其上取得良好的效果,因此脑部MR图像分割一直是医学影像领域研究的热点和难点问题。2.研究内容:本文旨在基于
基于模糊C均值聚类与超像素方法的脑部MR图像分割的任务书.docx
基于模糊C均值聚类与超像素方法的脑部MR图像分割的任务书一、背景医学影像处理是医学领域的重要研究方向之一,其中,脑部MR(MagneticResonance)图像分割是医学影像处理中的热门研究方向。脑部MR图像分割是指将脑部MRI图像中的脑组织分割为不同的区域,以便医生进行更精确的诊断和治疗。随着计算机技术的不断发展,各种计算机辅助的脑部MR图像分割方法也不断涌现。二、问题描述针对目前脑部MR图像分割中存在的问题,本次任务计划基于模糊C均值聚类与超像素方法进行研究。具体来说,稍有以下方面的问题:1.传统的
基于改进模糊C均值聚类与Otsu的图像分割方法.pptx
基于改进模糊C均值聚类与Otsu的图像分割方法目录模糊C均值聚类算法模糊C均值聚类的基本原理传统模糊C均值聚类的优缺点改进的模糊C均值聚类算法Otsu的阈值分割方法Otsu阈值分割的基本原理Otsu阈值分割的优缺点基于Otsu的改进阈值分割方法基于改进模糊C均值聚类与Otsu的图像分割方法方法概述算法流程实验结果与分析与其他图像分割方法的比较与传统模糊C均值聚类算法的比较与传统Otsu阈值分割方法的比较与其他先进图像分割方法的比较应用场景与展望应用场景展望未来发展方向感谢观看
基于改进模糊C均值聚类与Otsu的图像分割方法.docx
基于改进模糊C均值聚类与Otsu的图像分割方法基于改进模糊C均值聚类与Otsu的图像分割方法摘要:图像分割是图像处理领域中的重要任务之一,它在许多应用中发挥着关键作用。然而,由于图像的复杂性和不确定性,传统的图像分割方法面临许多挑战。本文提出了一种基于改进模糊C均值聚类与Otsu的图像分割方法。该方法首先使用Otsu算法对图像进行全局阈值分割,得到大致的前景和背景分割结果。然后,基于改进的模糊C均值聚类算法对前景和背景进行细化分割,以得到准确的分割结果。实验证明,该方法在不同类型的图像上均显示出较好的性能