

一种基于多尺度聚合特征的单幅图像去雨方法.pdf
羽沫****魔王
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于多尺度聚合特征的单幅图像去雨方法.pdf
本发明属于计算机视觉领域,涉及一种基于多尺度聚合特征的单幅图像去雨方法。本发明是基于一种多尺度特征聚合密集连接卷积网络框架,由编码‑解码网络组成,每一个编码网络对应着一个解码网络;编码网络通过最大池化层降维和下采样,在进行最大池化的过程中记录最大池化的索引位置,并由该池化索引来引导对应的解码网络的上采样恢复过程。其中,编码网络和解码网络在卷积层是一样的,都是特征聚合密集连接卷积模块,只有最大池化和其对应的而上采样过程不同。本发明能够有效地去除不同密度的雨条纹,同时很好地保留了图像的细节。
基于多通道多尺度卷积神经网络的单幅图像去雨方法.docx
基于多通道多尺度卷积神经网络的单幅图像去雨方法基于多通道多尺度卷积神经网络的单幅图像去雨方法摘要:去除雨滴对于图像恢复和视觉分析任务具有重要意义。本文提出了一种基于多通道多尺度卷积神经网络的单幅图像去雨方法。该方法通过引入多尺度卷积操作,有效地捕获雨滴形状和纹理信息。同时,利用多通道输入,可以更好地还原图像细节和颜色信息。实验证明,该方法在去除雨滴的同时能够保持图像的自然性和细节。1.引言在许多应用场景下,如自动驾驶、监控等,由于天气等原因,图像中往往存在各种雨滴、雪花等干扰物,严重影响了图像的质量和可用
基于多尺度卷积神经网络的单幅图像去雾方法.pptx
基于多尺度卷积神经网络的单幅图像去雾方法目录添加章节标题多尺度卷积神经网络的基本原理卷积神经网络的基本结构多尺度卷积神经网络的作用多尺度卷积神经网络的优势单幅图像去雾的原理图像去雾的基本概念单幅图像去雾的原理去雾算法的分类基于多尺度卷积神经网络的单幅图像去雾方法方法概述算法流程实验结果分析去雾效果的评估指标主观评估指标客观评估指标评估指标的应用去雾算法的优缺点及改进方向去雾算法的优点去雾算法的缺点改进方向和未来发展THANKYOU
基于多尺度特征聚合的场景图像文字检测方法.pdf
本发明公开了一种基于多尺度特征聚合的场景图像文字检测方法;其包括:提取不同尺度文本图像特征表示,同时获取文字嵌入表示;将多尺度文本图像特征表示聚合后输入堆叠的基于Transformer结构的编码器中,获得加强的多尺度图像特征表示;利用加强的多尺度图像特征表示进行文字嵌入表示的更新;初始化一组查询向量,将加强的多尺度图像特征表示恢复到二维图像特征,将查询向量、二维图像特征和更新的文字嵌入表示同输入解码器中,得到更新的查询向量,再对更新的查询向量与文字嵌入表示进行计算得到文字掩码,最后后处理得到文字检测结果。
基于多阶段特征互补网络的单幅图像去雨方法.pdf
本发明公开了基于多阶段特征互补网络的单幅图像去雨方法,基于深度学习和渐进式复原的思想,构建了一种多阶段的框架,将复原任务分解为更小的子任务,在不同阶段针对性的应用不同的设计,使用编码器‑解码器网络来学习不同尺寸、方向的雨线特征,并且利用循环卷积网络(RNN)跨阶段进行互补的特征处理,最后与原始分辨率的雨图相结合来完成去雨,保留了更丰富的局部细节。从而更彻底地去除雨线并且保留更多的背景细节,提高单幅图像去雨后视觉效果,更好地解决图像中雨线造成背景和目标物体的遮挡和模糊等问题。