一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统.pdf
曾琪****是我
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统.pdf
本发明公开了一种基于多尺度膨胀卷积残差网络的图像去噪方法及系统,方法包括:获取训练数据集,并对训练数据集中的图像进行裁剪,得到块图像;搭建网络模型,采用批归一化和残差学习相结合的方式,采用最优的混合膨胀率模式,并引入多尺度结构,得到端到端的图像去噪模型;设置网络模型超参数,选择损失函数和优化方法对所述图像去噪模型进行训练,得到训练好的图像去噪模型;将噪声图片变换处理后输入到训练好的图像去噪模型中,将得到的图片做平均操作后输出去噪后的图片。本发明能够降低网络的参数量同时保证网络的去噪性能,且能够在去除图片噪
一种多尺度膨胀卷积残差密集网络的心电信号降噪方法.pdf
一种多尺度膨胀卷积残差密集网络的心电信号降噪方法,通过密集连接结构和不同大小的膨胀卷积自适应地学习多尺度的局部特征,能够充分利用所有卷积层的信息。设计双路特征融合增加后续信息流的变化,避免堆叠大量特征。所有双分支残差密集块生成的层级特征自适应地融合,并与浅层特征结合构建出全局特征。同时,在多尺度膨胀卷积网络中融入残差学习,促进跨层信息的交互、提高网络的有效性。
一种基于多尺度残差注意力网络的SAR图像去噪方法.pdf
本发明公开了一种基于多尺度残差注意力网络的SAR图像去噪方法。该方法步骤如下:构建训练集并对训练样本进行归一化操作;搭建多尺度残差注意力网络模型:通过多尺度卷积组提取图像不同尺度的特征,在特征提取过程中设计主干分支和掩码分支,主干分支用来进行特征处理,掩码分支生成注意力权重以提取图像信息的相关特征来区分噪声,在掩码分支的注意力机制中添加非局部模块以获得图像像素之间的长距离依赖关系,使用跳跃连接用以加快网络收敛速度,结合残差连接学习噪声分布;设置多尺度残差注意力网络训练模型参数并进行模型训练;将噪声图像输入
一种基于残差卷积自编码网络的图像去噪方法.pdf
本发明公开了一种基于残差卷积自编码网络的图像去噪方法,为了克服传统浅层线性结构特征提取能力有限,现有基于深度学习的图像去噪模型存在泛化能力弱等问题。以残差块、批归一化层和自编码器组成的残差卷积自编码块为基本去噪网络结构,提出了多功能去噪残差卷积自编码神经网络。本发明公开的图像去噪方法,在保持较高去噪质量和去噪精度的同时,不仅拥有盲去噪能力,还能去除与训练集类型不相同的噪声。
基于多尺度残差网络构架的低剂量CT图像去噪.docx
基于多尺度残差网络构架的低剂量CT图像去噪标题:基于多尺度残差网络构架的低剂量CT图像去噪摘要:低剂量CT图像的去噪是医学图像处理中的一项重要任务。由于低剂量CT图像受到噪声的影响,图像质量下降严重,对医生的诊断和治疗决策造成了困扰。因此,开发一种有效的低剂量CT图像去噪算法对于提高诊断准确性和减少辐射剂量具有重要意义。本论文提出了一种基于多尺度残差网络构架的低剂量CT图像去噪方法,该方法结合了深度学习和图像处理技术,能够显著提高低剂量CT图像的质量。关键词:低剂量CT图像、去噪、深度学习、多尺度残差网络