预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN111008639A(43)申请公布日2020.04.14(21)申请号201910989192.6(22)申请日2019.10.17(71)申请人安徽清新互联信息科技有限公司地址230088安徽省合肥市高新区创新大道2800号创新产业园二期J1区A座17-18楼(72)发明人张卡何佳尼秀明(74)专利代理机构合肥天明专利事务所(普通合伙)34115代理人苗娟(51)Int.Cl.G06K9/62(2006.01)G06N3/08(2006.01)G06N3/04(2006.01)权利要求书2页说明书5页附图3页(54)发明名称一种基于注意力机制的车牌字符识别方法(57)摘要一种基于注意力机制的车牌字符识别方法,可解决现有的车牌字符识别方法效率低、准确率不高的技术问题。包括以下步骤:S1、建立深度神经网络模型;S2、通过标注好的训练样本数据,优化所述深度神经网络模型参数,得到最优深度神经网络模型;S3、读取车牌图像信息,通过所述最优深度神经网络模型运算,输出的特征图就是该车牌字符属于每一类目标的可信度,选择最大可信度的识别结果作为当前车牌字符的最优识别结果。本发明可以保留更多的字符细节,同时不会增加模型的运算量;融合注意力机制,可以自适应地抓住每个字符的关键细节信息,字符识别结果更加精确,对相似字符的区分能力更强,对于模糊字符、残缺字符、粘连字符,鲁棒性更高。CN111008639ACN111008639A权利要求书1/2页1.一种基于注意力机制的车牌字符识别方法,其特征在于:包括以下步骤:S1、建立深度神经网络模型;S2、通过标注好的训练样本数据,优化所述深度神经网络模型参数,得到最优深度神经网络模型;S3、读取车牌图像信息,通过所述最优深度神经网络模型运算,输出的特征图就是该车牌字符属于每一类目标的可信度,选择最大可信度的识别结果作为当前车牌字符的最优识别结果。2.根据权利要求1所述的基于注意力机制的车牌字符识别方法,其特征在于:所述S1、建立深度神经网络模型;包括:S11、设计深度神经网络模型的输入图像;S12、设计主干网络;所述主干网络包括:卷积层conv0、三个残差网络基础结构体、卷积层conv1、卷积层conv2;conv0是一个核尺寸是7×7,跨度是4×4的卷积层;resnetblock0,resnetblock1,resnetblock2是三个残差网络基础结构体,所述残差网络基础结构体包括:maxpool0是一个核尺寸是2×2,跨度是2×2的最大值下采样层,convresnet1_0是一个核尺寸是1×1,跨度是1×1的卷积层,该卷积层的作用是降低特征图通道数,减少后续卷积层的运算量,convresnet1_1是一个核尺寸是3×3,跨度是2×2的卷积层,convresnet1_2是一个核尺寸是1×1,跨度是1×1的卷积层,该卷积层的作用是提升特征图通道数,增加特征丰富度,eltsum是两个输入特征图进行逐像素相加的合并层;conv1是一个核尺寸是3×3,跨度是1×1的卷积层,其作用是进行合并特征融合;conv2是一个核尺寸是1×1,跨度是1×1的卷积层,其作用是调整输出特征图的通道数目;S13、设计注意力网络,根据车牌字符的不同识别类别,自适应的调整注意力,对有利于字符识别的关键区域,分配更多的注意力权值;S14、设计字符识别网络,通过在步骤S12获取的高维抽象特征图和步骤S13获取的注意力特征图的基础上,进一步提升特征图网络的表达能力,最终识别出车牌字符。3.根据权利要求2所述的基于注意力机制的车牌字符识别方法,其特征在于:所述S13设计注意力网络,根据车牌字符的不同识别类别,自适应的调整注意力,对有利于字符识别的关键区域,分配更多的注意力权值;具体包括:注意力网络接入到步骤S12中的残差网络基础结构体resnetblock0后面;所述注意力网络结构包括:resnetblock3是残差网络基础结构体,所述残差网络基础结构体包括:avepool0是一个均值下采样层,fc0和fc1是两个全连接层,sigmod是激活函数层,其作用是获取每个通道的归一化权值,scale是输入特征图加权层,其作用是对输入特征图的各个通道特征图进行加权;avepool0层、fc0层、fc1层、sigmod层、scale层共同组成了一个SENet结构体;eltsum1是两个输入特征图进行逐像素相加的合并层,conv3是一个核尺寸是3×3,跨度是1×1的卷积层,其作用是进行合并特征融合;conv4是一个核尺寸是3×3,跨度是2×2的卷积层,其作用是生成注意力特征图,注意力特征图的通道数目和字符识别网络中最后的输出特征图通2CN111008639A权利要求书2/2页道