基于生成对抗网络的人脸匿名隐私保护方法.pdf
努力****爱静
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于生成对抗网络的人脸匿名隐私保护方法.pdf
本发明提供一种基于生成对抗网络的人脸匿名隐私保护方法。本发明首先对人脸图像数据预处理;然后构建生成对抗网络结构;再建立人脸区域匿名的目标函数;然后建立场景内容区域保留的目标函数;随后进行人脸匿名与场景保留的目标函数的结合;最后采用公开数据集进行训练及测试,输出最终结果。本方法对图像中人脸区域进行合成脸的替换而达到人脸匿名的效果,相对以往的马赛克遮挡的方法更高效并且在视觉上更友好。本发明方法具有高效性与实用性,对人物图像的隐私保护更高效和美观。
基于层次k匿名身份替换的人脸生成隐私保护方法.pdf
本发明公开了一种基于层次k匿名身份替换的人脸生成隐私保护方法,首先进行人脸图像数据集预处理,然后构建层次k匿名生成对抗网络结构,构建层次k匿名的目标函数;再构建人脸替换生成对抗网络结构,构建人脸替换的目标函数;最后使用公开数据集进行训练及测试,得到训练好的层次k匿名生成对抗网络和人脸替换生成对抗网络。本发明替换的目标人脸也是通过网络生成的,从而不会侵犯他人的隐私,相对以往的马赛克遮挡的方法更有效并且视觉上更友好。通过实验结果显然证实了所提出方法的高效性与实用性,对人物图像的隐私保护更高效和美观。
一种基于生成对抗网络的隐私保护数据生成方法.pdf
本发明公开了一种基于生成对抗网络的隐私保护数据生成方法,涉及数据生成领域,包括如下步骤:构建前置自编码器;构建生成对抗网络模型;将自编码器应用于生成对抗网络模型的数据生成。该方法使用预训练的自编码器将给定数据集映射到低维连续空间,通过低维空间中的生成器和原始数据空间中的鉴别器进行对抗学习从而获得具有模拟真实数据的生成模型。该方法可以有效解决在隐私保护政策下,在获取训练数据时经常收到限制而导致训练数据集匮乏问题。
基于生成对抗网络的人脸图像质量增强方法.pdf
本发明公开了人脸图像质量增加方法?生成对抗网络方法,具体地,包含以下五个步骤:1)静态人脸数据采集,2)数据处理,3)搭建生成对抗网络,4)训练生成对抗网络,5)测试生成对抗网络,本发明采用生成对抗网络来建模人脸图像质量,生成器包含图像增强、分辨率增强,图像增强实现对人脸图像亮度和噪声的矫正与增强,采用三种不同的方式来测量原始高质量人脸图像和增强后人脸图像之间的相似性,分别是MSE、SSIM以及判别器输出的分数,实现半监督的方法实现人脸图像质量增强,不需要标记训练数据,大大简化训练难度。
基于生成对抗网络的人脸图像彩色化方法.docx
基于生成对抗网络的人脸图像彩色化方法生成对抗网络是一种现在非常流行的机器学习技术,它可以通过训练一组生成器和判别器模型来生成高质量的数据。在计算机视觉领域中,其中一个重要的应用是图像彩色化。本篇论文将介绍使用生成对抗网络实现人脸图像彩色化的方法。首先我们将介绍生成对抗网络的原理,然后我们将详细介绍该方法的实现和效果。生成对抗网络被称为对抗生成网络,是一种用来生成高质量样本的机器学习模型。GAN由两部分组成:生成器和判别器。生成器从无噪声向量中生成数据,而判别器根据生成数据和真实数据分别判断其是否为真。通过