预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN111311506A(43)申请公布日2020.06.19(21)申请号202010068315.5(22)申请日2020.01.21(71)申请人辽宁师范大学地址116000辽宁省大连市沙河口区黄河路850号(72)发明人傅博王丽妍杜飞飞刘芳菲(74)专利代理机构大连非凡专利事务所21220代理人闪红霞(51)Int.Cl.G06T5/00(2006.01)G06T7/00(2017.01)权利要求书3页说明书6页附图2页(54)发明名称基于双残差网络的低剂量CT牙齿图像去噪方法(57)摘要本发明公开一种基于双残差网络的低剂量CT牙齿图像去噪方法,首先训练辅助网络,并保存模型;利用经过双残差网络提取的特征空间图之间的相似关系,计算损失函数值,通过合并去噪网络和双残差网络之间的损失函数值,进而更新参数以辅助去噪网络的训练。该方法主要包括数据加载模块、辅助网络训练模块、双残差网络去噪模块、测试模块。本发明对低剂量CT牙齿图像去噪有着显著的效果,能够保留图像的一些细节特征,具有重要的应用价值。CN111311506ACN111311506A权利要求书1/3页1.一种基于双残差网络的低剂量CT牙齿图像去噪方法,其特征在于按照如下步骤进行:01部分,取BSD500数据集的灰度图像,在进入网络模型之前进行预处理操作,具体步骤如下:步骤C011:导入BSD500数据集的灰度图像,分别为500张预处理图像和500张真实图像,各500张灰度图像中432张做训练集,68张做测试集,预处理图像数据集记为Pre_Image,用于验证的真实图像数据集记为Real_Image;500张预处理图像分别记为Pre_Image1,Pre_Image2,…,Pre_Image500;500张真实图像分别记为Real_Image1,Real_Image2,…,Real_Image500;步骤C012:将500张预处理图像和500张真实图像切块,块的大小为48*48像素,将预处理图像与真实图像所切的块分别记为预处理图像块Pre_P1,Pre_P2,…,Pre_Pn和真实图像块Real_P1,Real_P2,…,Real_Pn;步骤C013:将预处理图像块Pre_P1,Pre_P2,…,Pre_Pn分别加入σ值为50的高斯噪声,记为噪声图像块Noise_P1,Noise_P2,…,Noise_Pn;步骤C014:每次随机选取16000个噪声图像块和16000个真实图像块输入网络,其中噪声图像块记作Noise_Pi,真实图像块记作Real_Pi,1≤i≤16000;02部分,训练辅助网络20次,为双残差网络去噪提供数据,具体步骤如下:步骤C021:取单通道的真实图像块Real_Pi,输进网络;步骤C022:开始训练M=16000对应的线性关系模型Model1,约定变量epoch_pro为辅助网络循环训练的次数,初始为0;所述模型Model1的目标函数定义为:式中为真实图像块Real_Pi,L(·)为损失函数,f(·|Φ)表示带有Φ参数化的辅助网络,λR(Φ)是一个带有参数Φ和λ的正则化项,所述λ>0;步骤C0221:进入浅层特征提取层,记为Conv_pro1层;Conv_pro1层由64个3*3大小的滤波器组成,真实图像块Real_Pi经过Conv_pro1层后,得到64个通道的浅层特征空间图,记为Real_proPi_fm1;步骤C0222:进入深层特征提取层,记为Deep_proRes2层;Deep_proRes2层中包含5个残差组和一个卷积层以及一个长跳跃连接;每一个残差组中包含10个带有通道注意机制的残差块和一个短跳连接;其中残差块是由两个卷积层和Relu激活层以及跳跃连接构成;浅层特征空间图Real_proPi_fm1经过Deep_proRes2层后,得到64个通道的深层特征空间图,记为Real_proPi_fm2;步骤C0223:进入重构层,记为Conv_pro3层;Conv_pro3层由1个3*3大小的滤波器组成,深层特征空间图Real_proPi_fm2经过Conv_pro3层后,得到重构特征空间图,记为Real_proPi_fm3;步骤C023:求重构特征空间图Real_proPi_fm3和真实灰度图像块Real_Pi之间的差异,通过L1Loss计算方法可得相应的损失函数值,记为loss_pro,置epoch_pro=epoch_pro+1;若loss_pro值小于0.01或者训练次数epoch_pro达到20,网络停止训练,保存训练模型2CN111311506A权利要求书2/3页model_pro.pt文件;否则将loss_pro值反向传播,通过ADAM优化算法重新更新参