多尺度一维卷积神经网络的风机基座螺栓松动诊断方法.pdf
飞飙****ng
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
多尺度一维卷积神经网络的风机基座螺栓松动诊断方法.pdf
本发明涉及多尺度一维卷积神经网络的风机基座螺栓松动诊断方法,属于机械状态诊断技术领域。首先,以风机运行时振动时域信号作为多尺度一维卷积神经网络的输入,摆脱对信号处理和专业知识的依赖,并最大程度保留原始信号特征;然后,通过交替的多尺度卷积层和池化层对时域信号特征进行学习;最后,在特征输出层后添加Softmax多分类器,利用反向传播逐层微调结构参数建立特征空间到健康状态空间的映射,输出风机基座螺栓松动程度诊断结果。本方法将松动程度特征自动学习与松动程度诊断融为一体,实现了风机基座螺栓松动程度智能诊断。通过在稳
检测螺栓松动的方法、卷积神经网络、训练方法及系统.pdf
本申请公开一种检测螺栓松动方法、卷积神经网络、训练方法及系统,其中,训练方法,包括:获取测试结构在不同螺栓松动状态测试下的振动图像序列;提取振动图像序列中目标区域内预设数量像素点的振动位移信号;将提取的每个像素点的振动位移信号转换为时频图像;构建训练样本;以训练样本中时频图像作为输入,以预测螺栓松动状态类别作为输出,将待训练的卷积神经网络训练至收敛。本申请中一个视频样本能够提供成千上万个振动位移信号用于卷积神经网络的训练,充足的训练数据能大大提高卷积神经网络的预测准确率,从而解决了卷积神经网络训练中工程实
基于视觉测振和卷积神经网络的螺栓松动检测方法.pptx
汇报人:/目录0102视觉测振技术卷积神经网络螺栓松动检测原理03图像采集特征提取振动信号分析螺栓松动程度判断04网络结构训练过程螺栓图像分类分类结果评估05实验设置实验结果结果分析方法优势与不足06在线检测与预警系统工业物联网应用技术改进与优化方向汇报人:
1_王威_基于多尺度卷积神经网络的故障诊断方法研究.doc
PAGEXIVPAGEXIII摘要在现代工业生产设备不断朝着结构化、自动化和智能化方向发展的过程中,电机仍是主要的动力输出设备。若电机在运行过程中出现故障,会导致其运行效率降低,系统能耗上升等问题,严重时甚至造成电机损坏,使整体系统设备长时间停机维修,造成严重的经济损失。因此,研究电机智能故障诊断技术,对保障生产设备高效运行的稳定性、可靠性具有重要意义。随着科技的不断创新和发展,信号处理、人工智能等技术不断取得突破,故障诊断技术也更加精确化、智能化。本文结合实际生产过程中常见的电机变工况和强噪
1_王威_基于多尺度卷积神经网络的故障诊断方法研究.doc
XIVXV摘要在现代工业生产设备不断朝着结构化、自动化和智能化方向发展的过程中,电机仍是主要的动力输出设备。若电机在运行过程中出现故障,会导致其运行效率降低,系统能耗上升等问题,严重时甚至造成电机损坏,使整体系统设备长时间停机维修,造成严重的经济损失。因此,研究电机智能故障诊断技术,对保障生产设备高效运行的稳定性、可靠性具有重要意义。随着科技的不断创新和发展,信号处理、人工智能等技术不断取得突破,故障诊断技术也更加精确化、智能化。本文结合实际生产过程中常见的电机变工况和强噪声环境下的故障诊断问题,在分析故