预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、已知:如图AB是⊙O的直径点P在BA的延长线上弦CD交AB于E连接OD、PC、BC∠AOD=2∠ABC∠P=∠D过E作弦GF⊥BC交圆与G、F两点连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④2、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.3、如图正方形的边长为4以点为圆心为半径画圆弧得到扇形(阴影部分点在对角线上).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是()A.B.1C.D.4、如图在△ABC中∠ACB=90°AC=BCAB=4cmCD是中线点E、F同时从点D出发以相同的速度分别沿DC、DB方向移动当点E到达点C时运动停止直线AE分别与CF、BC相交于G、H则在点E、F移动过程中点G移动路线的长度为()A.2B.πC.2πD.π5、如图AB是⊙O的直径BC与⊙O相切于点BAC交⊙O于点D若∠ACB=50°则∠BOD等于()A.40°B.50°C.60°D.80°6、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD7、如图物体由两个圆锥组成其主视图中.若上面圆锥的侧面积为1则下面圆锥的侧面积为()A.2B.C.D.8、如图点A、B、C在⊙O上且∠ACB=100o则∠α度数为()A.160oB.120oC.100oD.80o9、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°10、已知一个三角形的三边长分别为5、7、8则其内切圆的半径为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图四边形ABCD内接于⊙O∠A=125°则∠C的度数为______.2、一个圆锥的底面半径r=6高h=8则这个圆锥的侧面积是_____.3、圆锥的底面半径为3侧面积为则这个圆锥的母线长为________.4、如图是四个全等的正八边形和一个正方形拼成的图案已知正方形的面积为4则一个正八边形的面积为____.5、如图正五边形ABCDE和正三角形AMN都是⊙O的内接多边形则∠BOM=_______.三、解答题(5小题每小题10分共计50分)1、已知:如图、是的切线切点分别是、为上一点过点作的切线交、于、点已知求的周长.2、如图在△ABC中AB=AC∠BAC与∠ABC的角平分线相交于点EAE的延长线交△ABC的外接圆于点D连接BD.(1)求证:∠BAD=∠DBC;(2)证明:点B、E、C在以点D为圆心的同一个圆上;(3)若AB=5BC=8求△ABC内心与外心之间的距离.3、问题探究(1)在中分别是与的平分线.①若如图试证明;②将①中的条件“”去掉其他条件不变如图问①中的结论是否成立?并说明理由.迁移运用(2)若四边形是圆的内接四边形且如图试探究线段之间的等量关系并证明.4、已知:..求作:使它经过点和点并且圆心在的平分线上5、如图在中以为直径作过点作交于.求证:是的切线.-参考答案-一、单选题1、A【解析】【分析】连接BD、OC、AG、AC过O作OQ⊥CF于QOZ⊥BG于Z求出∠ABC=∠ABD从而有弧AC=弧AD由垂径定理的推论即可判断①的正误;由CD⊥PB可得到∠P+∠PCD=90°结合∠P=∠DCO、等边对等角的知识等量代换可得到∠PCO=90°据此可判断②的正误;假设OD∥GF成立则可得到∠ABC=30°判断由已知条件能否得到∠ABC的度数即可判断③的正误;求出CF=AG根据垂径定理和三角形中位线的知识可得到CQ=OZ通过证明△OCQ≌△BOZ可得到OQ=BZ结合垂径定理即可判断④.【详解】连接BD