基于多尺度低秩矩阵分解的红外与可见光图像融合方法.pdf
诗文****仙女
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于多尺度低秩矩阵分解的红外与可见光图像融合方法.pdf
本发明公开了一种基于多尺度低秩矩阵分解的红外与可见光图像融合方法,其基于多尺度低秩矩阵分解将预处理后的红外图像和预处理后的可见光图像分解为多层次局部低秩图和全局低秩图两类,并根据各分解图像特点,针对性设计最优融合规则,得到的最终融合图像在不引入人工伪影和斑块的同时,能够保留原图的细节信息、增强热辐射显著目标,具有较好的对比度,有利于后续目标识别、检测等应用的开展。
基于ADC-SCM与低秩矩阵表达的红外与可见光图像融合方法.pdf
本发明公开一种基于ADC‑SCM与低秩矩阵表达的红外与可见光图像融合方法,涉及图像处理技术领域。所述融合方法结合自适应双通道脉冲发放皮层(ADC‑SCM)与低秩矩阵(LRR)理论提出一种有效的红外与可见光图像融合算法;首先,将低秩表达与调频(FT)显著性算法相结合对红外源图像进行显著区域检测,从而将源图像中的显著区域与背景区域分离;然后,对所得的两个区域分别进行融合,为了最大程度保留显著特征,选取绝对值最大的融合规则对显著区域进行融合;最后通过NSST逆变换获得融合的背景,将融合的显著区域与背景区域进行叠
基于多尺度结构分解的红外和可见光图像感知融合方法.pdf
本发明涉及基于多尺度结构分解的红外和可见光图像感知融合方法,属于多传感器图像融合技术领域。该方法充分考虑了人类视觉系统(HVS)的相关特性,可以帮助解决当前融合研究在视觉信息感知方面的潜在缺陷。与其他算法相比,该方法构建了基于尺度感知边缘保持的多尺度结构分解方法,能够获得不同尺度的图像结构,其中边缘信息被保留在每一层中,小尺度细节可以被视为具有精细空间尺度的结构。此外,该方法在融合过程中充分考虑了像素级的显著信息和大尺度的结构信息,从而能够获得具有丰富信息且视觉感知效果良好的融合图像。
基于方向多尺度群低秩分解的全色图像锐化方法.pdf
本发明公开一种基于方向多尺度群低秩分解的全色图像锐化方法,其实现的步骤为:(1)输入源图像;(2)获得LMS和dPan图像;(3)计算多光谱图像MS和下采样全色图像dPan光谱相关系数;(4)非下采样轮廓小波分解;(5)构建数据矩阵;(6)矩阵低秩分解;(7)重构高低频稀疏矩阵;(8)注入高低频稀疏矩阵(9)非下采样轮廓小波反变换;(10)输出高分辨率图像。本发明利用非下采样轮廓小波变化与矩阵低秩分解提取全色图像的轮廓结构信息与细节,并采用新的高低频注入模型,减少了全色图像过度注入而引起的光谱扭曲,最终得
基于低秩矩阵恢复的多曝光图像去伪影融合方法.pdf
本发明公开了一种基于低秩矩阵恢复的多曝光图像去伪影融合方法。首先,归一化输入多曝光图像序列;接着,使用相机响应函数对归一化后的图像序列进行辐射校准;然后向量化多曝光图像序列构成低秩矩阵恢复的数据矩阵;使用改进的低秩矩阵恢复算法得到低秩矩阵;从低秩矩阵数据中恢复目标的高动态范围(Highdynamicrange,HDR)图像。本发明利用低秩矩阵恢复的最新研究成果,能够得到有效去除融合后的HDR图像中的伪影和模糊问题。