预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图点ABCDE是⊙O上5个点若AB=AO=2将弧CD沿弦CD翻折使其恰好经过点O此时图中阴影部分恰好形成一个“钻戒型”的轴对称图形则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.2、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.243、在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心DO长为半径画弧交⊙O于BC两点;(3)连接DBDCABACBC.根据以上作图过程及所作图形下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD4、如图点AB的坐标分别为点C为坐标平面内一点点M为线段的中点连接则的最大值为()A.B.C.D.5、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD6、如图、为的切线、为切点点为弧上一点过点作的切线分别交、于、若则的周长等于().A.B.C.D.7、下列说法中正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径8、如图在四边形ABCD中则AB=()A.4B.5C.D.9、如图一段公路的转弯处是一段圆弧则的展直长度为()A.3πB.6πC.9πD.12π10、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图I是△ABC的内心∠B=60°则∠AIC=_____.2、若一个扇形的弧长是面积是则扇形的圆心角是__________度.3、如图以为直径作半圆圆心为点;以点为圆心为半径作过点作的平行线交两弧于点、则阴影部分的面积是________.4、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.5、如图在⊙O中的度数等于250°半径OC垂直于弦AB垂足为D那么AC的度数等于________度.三、解答题(5小题每小题10分共计50分)1、如图1正方形ABCD中点P、Q是对角线BD上的两个动点点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动.设运动的时间为xs△AQP的面积为ycm2y与x的函数图象如图2所示根据图象回答下列问题:(1)a=.(2)当x为何值时APQ的面积为6cm2;(3)当x为何值时以PQ为直径的圆与APQ的边有且只有三个公共点.2、等边三角形的边长为1厘米面积为0.43平方厘米.以点为圆心长为半径在三角形外画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形;以点为圆心长为半径画弧交的延长线于点形成扇形.(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形求所围成的图形的面积以及所画出的所有弧长的和.(结果保留)3、如图⊙O的半径弦AB于点C连结AO并延长交⊙O于点E连结EC.已知.(1)求⊙O半径的长;(2)求EC的长.4、已知:如图在⊙O中AB为弦C、D两点在AB上且AC=BD.求证:.5、问题探究(1)在中分别是与的平分线.①若如图试证明;②将①中的条件“”去掉其他条件不变如图问①中的结论是否成立?并说明理由.迁移运用(2)若四边形是圆的内接四边形且如图试探究线段之间的等量关系并证明.-参考答案-一、单选题1、A【解析】【分析】连接CD、OE根据题意证明四边形OCED是菱形然后分别求出扇形OCD和菱形OCED以及△AOB的面积最后利用割补法求解即可.【详解】解:连接CD、OE由题意可知OC=OD=CE=ED弧=弧∴S扇形ECD=S扇形OCD四边形OCED是菱形∴OE垂直平分CD由圆周角定理可知∠COD=∠CED=120°∴CD=2×2×=2∵AB=OA=OB=2∴△AOB是等边三角形∴S△AO