预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于压缩感知的图像重构优化算法研究摘要:压缩感知(CompressiveSensingCS)理论知识于2006年正式提出该理论知识利用信号数据的稀疏性或数据的可压缩性加以实现信号数据的采集与编解码。当信号数据有一定的稀疏性或者可压缩性时利用采集少量的投影值便可实现数据的近似重构。本文选用优化后的分段正交匹配追踪(StOMP)算法为例对压缩感知图像的重构算法进行了研究并且在Matlab环境中采用不同采样率分别对Lena512国际标准测试图像进行仿真实验并给出详细的仿真实验结果。关键词:压缩感知;图像重构;正交匹配追踪(StOMP)奈奎斯特(Nyqusit)采样定理[1]要求在带限数据采样过程中采样率必须大于最高频率的两倍。在该理论指导下数据信息的获取、存储、处理和传输等技术的实现即成为当今科学技术领域进一步向前迈步的重要技术瓶颈之一。具体来说主要表现在如下两个方面:(1)高采样率的数据采集导致了较高成本。(2)在某些应用中[2-3]奈奎斯特采样定理支配的高采样率导致了采样样本过多。显而易见这种基于奈奎斯特(Nyqusit)采样定理为基础的技术造成了大量资源的浪费。2006年由美国科学院院士D.Donoho、E.Candes同华裔科学家T.Tao等研究学者提出了一种全新的数据采样理论――“压缩感知”(CompressiveSensing简写为“CS”)。该理论表明当信号数据是可压缩的可以通过采取极少数量的信号投影值加以实现信号的近似重构可以极大程度的降低了数据采集的成本。1测量矩阵的设定在“CS”理论中测量矩阵Ф的设定十分重要。Ф的合理性直接决定数据重构的质量当测量数目达到临界时合理的测量矩阵就可以确保数据的准确恢复。本文的研究选择一个M×N的高斯矩阵作为测量矩阵高斯测量矩阵的构造方式为设定矩阵矩阵当中的每个数据元素都服从独立分布符合均值为0方差为的高斯分布即:高斯测量矩阵的缺点是矩阵内元素所需存储空间大但优点在于它几乎与任何稀疏信号都不相关因而需要的测量次数最少。2压缩感知算法的优化本文对分段正交匹配追踪(StOMP)算法进行二次优化改善了原算法的部分缺陷使其在计算时间上略有改进。优化后的StOMP算法如下:步骤1:初始化最大迭代步长maxstep求解的最大迭代误差es=1然后求得迭代误差的第一位非零数字记作n;步骤2:对小波稀疏矩阵y进行随机测量得:步骤8:稀疏解精度判定:如果算法结束得。3仿真实验结果仿真实验采用Symmlet5为正交小波基做小波变换采用国际标准测试图像Lena.bmp作为测试图像对不同高频子带采用不同的采样率利用分段正交匹配追踪(StOMP)算法对采样后的图像数据进行重构。分别求得峰值信噪比PSNR、图像熵、灰度平均值观察实验数据比对算法的性能得到仿真实验结论。在采样率f1分别为0.1、0.05、0.01时对Lena512x512图像重构效果如下图所示。上图StOMP算法对lena512图像重构效果(a)原始图像(b)f=0.1(c)f=0.05(d)f=0.01。Lena512重构后图像PSNR、图像熵、灰度平均值的数据比对如下表所示。4结论选用不同的采样率经优化后的StOMP算法重构后的图像均保持较好有着较好的视觉效果随着采样率f的下降PSNR值和图像熵值逐渐减少灰度平均值保持在一个数值上下这表明我们可以用较少的采样数据重构质量较好的图像。参考文献:[1]李晓陆.带通采样定理在降低功耗问题中的实际应用[J].桂林电子工业学院学报200424(05):36-38.[2]崔庆林蒋和全.高速A/D转换器动态参数的计算机辅助测试[J].微电子学200434(05):505-509.[3]王萍石寅.一种用于高速A/D转换器的高精度参考电压电阻网络[J].电子学报200028(12):48-51.