

一种基于卷积网络多尺度特征融合的鞋印身高估计方法.pdf
醉香****mm
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于卷积网络多尺度特征融合的鞋印身高估计方法.pdf
本发明提供了一种基于卷积网络多尺度特征融合的鞋印身高估计方法,属于刑事侦查技术领域。技术方案:将鞋印旋转校正;将鞋印进行中心化处理;对异常数据进行处理;将鞋印数据增广;通过多尺度特征提取网络对图像进行处理;通过金字塔特征融合网络对图像进行处理;通过全局结构特征提取网络对图像进行处理;通过身高回归预测网络输出预测身高。有益效果:本发明使用多尺度特征提取网络提取出不同尺度的图像特征并通过金字塔特征融合网络进行多尺度特征融合,最大限度地保留了图像中深层的特征语义信息特征和浅层的空间信息特征;保证泛化能力的基础上
基于多尺度特征融合空洞卷积网络的手写中文识别方法.pdf
本发明属于识别方法技术领域,具体涉及基于多尺度特征融合空洞卷积网络的手写中文识别方法,使用CASIA‑HWDB1.1数据集作为模型训练与测试数据集;对数据的二值化与归一化处理;对数据标签进行处理,得到One‑Hot形式的数据标签,供网络进行训练;将数据以K折交叉方法划分为多个训练集‑测试集组合;构建识别网络;使用训练集数据对网络进行参数的优化训练;使用K折交叉得到的多个数据集获取最优模型;使用准确率、召回率与F1‑Score对模型进行评价。本发明基于深度神经网络构建了手写字识别模型,模型无需进行人工特征工
基于卷积神经网络的多尺度融合特征图在人群密度估计中的应用.pptx
基于卷积神经网络的多尺度融合特征图在人群密度估计中的应用目录添加目录项标题卷积神经网络概述卷积神经网络的基本结构卷积神经网络在图像处理中的应用多尺度特征提取的重要性多尺度融合特征图的方法特征图的尺度变换特征图的融合策略融合特征图的优化方法人群密度估计的背景和意义人群密度估计的应用场景当前人群密度估计的方法和局限性基于多尺度融合特征图的方法的优势实验设计和结果分析数据集介绍和预处理实验设置和模型训练过程实验结果分析和比较对结果的解读和对未来工作的展望感谢观看
一种基于多尺度特征融合的单目深度估计方法.pdf
本发明涉及一种基于多尺度特征融合的单目深度估计方法,属于三维场景感知领域,包括以下步骤:S1:引入Non‑Local注意力机制,构造混合的归一化函数;S2:在特征提取网络的本层特征、深层特征和浅层特征之间引入注意力机制,计算特征图上特征之间的关联信息矩阵;S3:构建多尺度特征融合模块;S4:在解码网络引入空洞空间金字塔池化模块,扩大卷积的感受野,迫使网络学习更多的局部细节信息。本发明有效的实现了特征提取网络分层特征之间跨空间和跨尺度的特征融合,提高了网络学习局部细节的能力并使深度图在重建过程中完成了细粒度
一种基于多特征融合全卷积网络的多聚焦图像融合方法.pdf
本发明涉及图像处理技术领域,具体涉及一种基于多特征融合全卷积网络的多聚焦图像融合方法。本发明弥补了传统图像融合方法中均是手动设计特征提取方法和融合规则的不足,使多聚焦图像融合后细节信息得到充分保留;利用不同模糊函数预处理的图像数据训练网络,提高了网络的泛化性能和融合精度;构建的多特征融合全卷积网络,利用跨层连接实现了特征复用,既保留了图像的原始特征,同时增添了网络学习的特征,使得图像表征更加全面;且减少了网络参数量,提高了算法效率。