预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于分形迭代的图像表达与构造方法摘要:分形几何可以准确地描述自然界里的复杂图形该文总结了分形图像理论并利用计算机实现了图像的仿真表达提出了利用分形迭代参数表征图像的方法为目标匹配提供了新的思路。关键词:分形图像迭代函数系统仿真中图分类号:TP311文献标识码:A文章编号:1674-098X(2013)02(c)-00-02几何学是研究物体形状及其结构关系的一门自然学科欧几里德几何学将物体简化为简单的点、线、面并通过解析几何对点、线、面进行公式化表述。大自然中广泛存在的花草、山脉河流、闪电、星系等客观物体其内部结构复杂多样变化无穷利用传统欧几里德几何学无法描述这些不规则物体或图形只得将这些自然形态的图形标上“病态”标签而加以排除因此传统欧几里得几何理论做不到“放之四海而皆准”。1967年美国的《科学》杂志上发表了一篇题为《英国的海岸线究竟有多长?》的论文。这篇论文对海岸线的本质作了独特的分析:当你用一把固定长度的直尺来测量时对海岸线上两点间的小于尺子尺寸的曲线只能用直线来近似因此测得的长度是不精确的。如果你用更小的尺子来刻画这些细小之处就会发现这些细小之处同样也是无数的曲线近似而成的随着你不停地缩短你的尺子你发现的细小曲线就越多你测得的曲线长度也就越大如果尺子小到无限测得的长度也是无限。海岸线的长度是多少取决于尺子的长短。Mandelbrot指出:当采用不同尺度的尺子去测量海岸线长度时结果会不一样很显然欧几里得几何的长度概念在处理海岸线的长度时遇到了困难1975年Mandebrot提出用“Fractal”(分形)一词来描述这种自然形态分形的理论就此萌芽并迅速发展起来曼德布罗特也自然而然地成为了分形理论的奠基人。曼德布罗特对分形的定义:”Afractalisashapemadeofpartssimilartothewholeinsomeway.”经过发展分形几何理论体系逐步得以确立。从分形研究的发展进程来看许多概念诸如自仿射分形、自反演分形、递归分形、多重分形、胖分形等逐渐建立起来标志着分形理论不断走向繁荣[1]。在自然科学中具备分形特征的例子比比皆是利用分形几何理论可以实现对分形对象的准确描述并可以利用计算机模拟出具备分形特征的物体或图象迭代函数系统(IFS)就是描述分形对象的有力工具[2]。1迭代函数系统的分形理论定义1:度量空间与定义在其上的一有限个的压缩映射族组成一迭代函数系记为IFS。若的压缩比为则称为IFS的压缩比。定理1设是完备度量空间上的IFS压缩比为c的变换定义为:则为上的压缩比为c的压缩映射即则存在不变集满足且定理1中的不变集称为该IFS的吸引子。定理2设为完备度量空间上的压缩比为则带凝聚的双曲IFS变换定义为:则是完备度量空间上带有压缩比为C的压缩映射即且存在唯一的不动点则2迭代函数系统仿真仿射变换是实现分形计算的重要方法维欧几里得空间中的仿射变换具有下面的形式:其中是上的线性变换而b是中的一个矢量。仿射变换可以使平移、旋转、伸缩以及反射的组合[3]。二维仿射变换为:其中abcdef为仿射变换矩阵元素谢尔宾斯基三角形的仿射变换矩阵如表1所示计算模拟结果如图1所示。图1谢尔宾斯基三角形的计算模拟结果(迭代次数分别为139次)橛子树的仿射变换矩阵如表2所示计算模拟结果如图2所示。图2橛子树的计算模拟结果(迭代次数分别为9次18次90次)从模拟结果可以看出在自仿射变换相关参数设定合理的情况下计算模拟程序很好地模拟了谢尔宾斯基三角形和橛子树的形状对其他分形图像的模拟也取得了很好的结果。3结语模拟结果表明具备分形特征的图像可以由少数几个合理的参数进行表征而自然界的图像虽然不具备严格的自相似性但都具备统计学自相似性或局部自相似性因此可以通过自仿射变换实现自然界实际图像的压缩。从军事角度考虑这些看似复杂的图像其信息量并不大可以利用迭代系数对图像目标进行自动识别由于参数决定了图像的细节因此基于参数的图像目标识别方法为目标自动识别提供了一条新途径。参考文献[1]曹磊韦惠.分形几何的图像压缩研究[J].模式识别与人工智能1994(2).[2]张梁斌周必水.自适应遗传算法与分形图像压缩结合的新方法[J].计算机应用研究2006(7):249-252.[3]李丹张梁斌.基于Jacquin分形法图像编码的matlab仿真实现[J].万里学院