预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

4山东省文登市八年级数学下册5.1认识三角形第二课时教案苏科版教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”;3、按角将三角形分成三类。教学重难点:三角形内角和定理推理和应用。教学方法:演示、实验法,尝试练习法。教学工具:一副三角板和三个剪好的三角形,课件。活动准备:学生预先剪好两个三角形,一副三角板。教学过程:复习:1、填空:(1)当0°<<90°时,是角;(2)当=°时,是直角;(3)当90°<<180°时,是角;(4)当=°时,是平角。2、如右图,∵AB∥CE,(已知)∴∠A=,()∴∠B=,()(第2题)二、探索活动:根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块。你发现了什么?小组交流。结论:三角形三个内角和等于180°(几何表示)(回放动画,加深印象)举例(略)练习1:1、判断:(1)一个三角形的三个内角可以都小于60°;()(2)一个三角形最多只能有一个内角是钝角或直角;()2、在△ABC中,(1)∠C=70°,∠A=50°,则∠B=度;(2)∠B=100°,∠A=∠C,则∠C=度;(3)2∠A=∠B+∠C,则∠A=度。3、如右图,在△ABC中,∠A=°∠=°∠=°求三个内角的度数。解:∵∠A+∠B+∠C=180°,()∴∴=∴=从而,∠A=,∠B=,∠C=三、猜一猜:(第3题)一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。按三角形内角的大小把三角形分为三类锐角三角形(acutetrangle)三个内角都是锐角直角三角形(righttriangle)有一个内角是直角钝角三角形(obtusetriangle)有一个内角是钝角举例(略)练习2:1、观察三角形,并把它们的标号填入相应的括号内:锐角三角形()直角三角形()钝角三角形()2、一个三角形两个内角的度数分别如下,这个三角形是什么三角形?(1)30°和60°()(2)40°和70°()(3)50°和30°()(4)45°和45°()四、猜想结论:简单介绍直角三角形,和表示方法,Rt△思考:直角三角形中的两个锐角有什么关系?结论:直角三角形的两个锐角互余举例(略)练习3:观察下列的直角三角形,分别写出它们符号表示、直角边和斜边。(图1)(图2)(1)图1中的直角三角形用符号写成,直角边是和,斜边是;(2)图2中的直角三角形用符号写成,直角边是和,斜边是;2、如下图,在Rt△CDE,∠C和∠E的关系是,其中∠C=55°,则∠E=度3、如上图,在Rt△ABC中,∠A=2∠B,则∠A=度,∠B=度;小结:1、三角形的三个内角的和等于180°;2、三角形按角分为三类:(1)锐角三角形(2)直角三角形(3)钝角三角形直角三角形的两个锐角互余检测练习:1、选择:三角形三个内角中,锐角最多可以是()A、0个B、1个C、2个D、如下图,△ABC中,∠A=60°,∠C=80°,∠B=度;3、如上图,∠1=60°,∠D=20°,则∠A=度;4、如右图,AD⊥BC,∠1=40°,∠2=30°,则∠B=度,∠C=度5、在空白处填入“锐角”、“直角”或“钝角”:如果三角形的三个内角都相等,那么这个三角形是三角形;(第4题)(2)如果三角形的两个内角都小于40°,那么这个三角形是三角形。提高练习:已知△ABC中,∠A∶∠B∶∠C=1∶3∶5,求∠A、∠B和∠C的度数,它是什么三角形?2、如右图,已知△ABC中,∠1=27°,∠2=85°,∠3=38°求∠4的度数3、一个零件的形状如图所示,按规定∠A应该等于90°,∠B、∠D应分别是20°和30°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出其中的理由吗?作业: