预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题“今有圆材埋在壁中不知大小以锯锯之深一寸锯道长一尺问径几何?”用现在的数学语言表述是:如图所示CD为⊙O的直径弦AB⊥CD垂足为ECE为1寸AB为10寸求直径CD的长.依题意CD长为()A.寸B.13寸C.25寸D.26寸2、如图破残的轮子上弓形的弦AB为4m高CD为1m则这个轮子的半径长为()A.mB.mC.5mD.m3、如图正三角形PMN的顶点分别是正六边形ABCDEF三边的中点则三角形PMN与六边形ABCDEF的面积之比()A.1:2B.1:3C.2:3D.3:84、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°5、已知⊙O的半径为4点O到直线m的距离为d若直线m与⊙O公共点的个数为2个则d可取()A.5B.4.5C.4D.06、已知扇形的圆心角为半径为则弧长为()A.B.C.D.7、往直径为的圆柱形容器内装入一些水以后截面如图所示若水面宽则水的最大深度为()A.B.C.D.8、如图AB是⊙O的弦等边三角形OCD的边CD与⊙O相切于点P连接OAOBOPAD.若∠COD+∠AOB=180°AB=6则AD的长是()A.6B.3C.2D.9、下列多边形中内角和最大的是()A.B.C.D.10、如图已知在中是直径则下列结论不一定成立的是()A.B.C.D.到、的距离相等第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图AB为圆O的切线点A为切点OB交圆O于点C点D在圆O上连接AD、CD、OA若∠ADC=25°则∠B的度数为____.2、如图在平面直角坐标系xOy中点ABC的坐标分别是(04)(40)(80)⊙M是△ABC的外接圆则点M的坐标为___________.3、如图在矩形中是边上一点连接将矩形沿翻折使点落在边上点处连接.在上取点以点为圆心长为半径作⊙与相切于点.若给出下列结论:①是的中点;②⊙的半径是2;③;④.其中正确的是________.(填序号)4、如图AB为△ADC的外接圆⊙O的直径若∠BAD=50°则∠ACD=_____°.5、如图在中点是的中点连接交弦于点若则的长是______.三、解答题(5小题每小题10分共计50分)1、如图在Rt△ABC中∠ACB=90°∠BAC的平分线交BC于点OOC=1以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=求cosB的值.2、在平面直角坐标系中平行四边形的顶点AD的坐标分别是其中.(1)若点B在x轴的上方①求的长;②且.证明:四边形是菱形;(2)抛物线经过点BC.对于任意的当am的值变化时抛物线会不同记其中任意两条抛物线的顶点为(与不重合)则命题“对所有的ab当时一定不存在的情形.”是否正确?请说明理由.3、如图所示AB是⊙O的直径点C为⊙O上一点过点B作BD⊥CD垂足为点D连结BC.BC平分∠ABD.求证:CD为⊙O的切线.4、如图AB、CD是⊙O中两条互相垂直的弦垂足为点E且AE=CE点F是BC的中点延长FE交AD于点G已知AE=1BE=3OE=.(1)求证:△AED≌△CEB;(2)求证:FG⊥AD;(3)若一条直线l到圆心O的距离d=试判断直线l是否是圆O的切线并说明理由.5、如图已知⊙O为Rt△ABC的内切圆切点分别为DEF且∠C=90°AB=13BC=12.(1)求BF的长;(2)求⊙O的半径r.-参考答案-一、单选题1、D【解析】【分析】连结AO根据垂径定理可得:然后设⊙O半径为R则OE=R-1.再由勾股定理即可求解.【详解】解:连结AO∵CD为直径CD⊥AB∴.设⊙O半径为R则OE=R-1.Rt△AOE中OA2=AE2+OE2∴R2=52+(R-1)2∴R=13∴CD=2R=26(寸).故选:D【考点】本题主要考查了垂径定理勾股定理熟练掌握垂径定理是解题的关键.2、D【解析】【分析】连接OB由垂径定理得出BD的长;连接OB再在中由勾股定理得出方程解方程即可.【详解】解:连接OB如图所示:由题意得:OC