预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图⊙O的半径为5弦AB=8P是弦AB上的一个动点(不与AB重合)下列符合条件的OP的值是()A.6.5B.5.5C.3.5D.2.52、如图AB是⊙O的弦等边三角形OCD的边CD与⊙O相切于点P连接OAOBOPAD.若∠COD+∠AOB=180°AB=6则AD的长是()A.6B.3C.2D.3、如图点BCD在⊙O上若∠BCD=130°则∠BOD的度数是()A.50°B.60°C.80°D.100°4、已知⊙O的半径等于3圆心O到点P的距离为5那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定5、已知⊙O中最长的弦为8cm则⊙O的半径为()cm.A.2B.4C.8D.166、在平面直角坐标系xOy中已知点A(43)以原点O为圆心5为半径作⊙O则()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与⊙O的位置关系无法确定7、下列语句错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦8、如图拱桥可以近似地看作直径为250m的圆弧桥拱和路面之间用数根钢索垂直相连其正下方的路面AB长度为150m那么这些钢索中最长的一根的长度为()A.50mB.40mC.30mD.25m9、一个商标图案如图中阴影部分在长方形中以点为圆心为半径作圆与的延长线相交于点则商标图案的面积是()A.B.C.D.10、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图四边形ABCD内接于⊙O∠A=125°则∠C的度数为______.2、如图中长为将绕点A逆时针旋转至则边扫过区域(图中阴影部分)的面积为________.3、如图△ABC是⊙O的内接三角形AB是⊙O的直径I是△ABC的内心则∠BIA的度数是_______°.4、如图四边形是正方形曲线是由一段段90度的弧组成的.其中:的圆心为点A半径为;的圆心为点B半径为;的圆心为点C半径为;的圆心为点D半径为;…的圆心依次按点ABCD循环.若正方形的边长为1则的长是_________.5、如图矩形ABCD的对角线交于点O以点A为圆心AB的长为半径画弧刚好过点O以点D为圆心DO的长为半径画弧交AD于点E若AC=2则图中阴影部分的面积为_____.(结果保留π)三、解答题(5小题每小题10分共计50分)1、在下列正多边形中是中心定义:为相应正多边形的基本三角形.如图1是正三角形的基本三角形;如图2是正方形的基本三角形;如图3为正边形…的基本三角形.将基本绕点逆时针旋转角度得.(1)若线段与线段相交点则:图1中的取值范围是________;图3中的取值范围是________;(2)在图1中求证(3)在图2中正方形边长为4边上的一点旋转后的对应点为若有最小值时求出该最小值及此时的长度;(4)如图3当时直接写出的值.2、如图点ABCD在⊙O上=.求证:(1)AC=BD;(2)△ABE∽△DCE.3、下列每个正方形的边长为2求下图中阴影部分的面积.4、如图已知AB是⊙O的直径CD是⊙O上的点OC∥BD交AD于点E连结BC.(1)求证:AE=ED;(2)若AB=10∠CBD=36°求的长.5、如图①已知抛物线的图象与轴交于、两点(在的左侧)与的正半轴交于点连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为点的坐标为_____(2)若以为圆心的圆与轴和直线都相切试求出抛物线的解析式:(3)在(2)的条件下如图②是的正半轴上一点过点作轴的平行线与直线交于点与抛物线交于点连结将沿翻折的对应点为’在图②中探究:是否存在点使得’恰好落在轴上?若存在请求出的坐标:若不存在请说明理由.-参考答案-一、单选题1、C【解析】【分析】连接OB作OM⊥AB与M.根据垂径定理和勾股定理求出OP的取值范围即可判断.【详解】解:连接OB作OM⊥AB与M.∵OM⊥AB∴AM=BM=AB=4在直角△OBM中∵OB=5BM=4∴.∴故选:C.【考点】本题考查