预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°2、如图正三角形PMN的顶点分别是正六边形ABCDEF三边的中点则三角形PMN与六边形ABCDEF的面积之比()A.1:2B.1:3C.2:3D.3:83、如图是⊙的直径点C为圆上一点的平分线交于点D则⊙的直径为()A.B.C.1D.24、如图AB是半圆的直径点D是弧AC的中点∠ABC=50°则∠BCD=()A.105°B.110°C.115°D.120°5、如图所示MN为⊙O的弦∠N=52°则∠MON的度数为()A.38°B.52°C.76°D.104°6、如图是一圆锥的侧面展开图其弧长为则该圆锥的全面积为A.60πB.85πC.95πD.169π7、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.118、如图物体由两个圆锥组成其主视图中.若上面圆锥的侧面积为1则下面圆锥的侧面积为()A.2B.C.D.9、如图是的直径若则的度数是()A.32°B.60°C.68°D.64°10、已知⊙O的半径为10圆心O到弦AB的距离为5则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图在甲以点为圆心的长为半径作圆交于点交于点阴影部分的面积为__________(结果保留).2、如图正方形ABCD的边长为2aE为BC边的中点的圆心分别在边AB、CD上这两段圆弧在正方形内交于点F则E、F间的距离为.3、如图在中半径是半径上一点且.是上的两个动点是的中点则的长的最大值等于__________.4、如图AB是⊙O的直径点CDE都在⊙O上∠1=55°则∠2=_____°.5、如图分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为则勒洛三角形的周长为_____.三、解答题(5小题每小题10分共计50分)1、如图在△ABC中以AB为直径的⊙O交AC于点M弦交AB于点E且ME=3AE=4AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.2、如图的两条弦(AB不是直径)点E为AB中点连接ECED.(1)直线EO与AB垂直吗?请说明理由;(2)求证:.3、如图分别切、于点、.切于点交于点与不重合).(1)用直尺和圆规作出;(保留作图痕迹不写作法)(2)若半径为1求的长.4、(1)如图①在△ABC中AB=4AC=3若AD平分∠BAC交于点那么点到的距离为.(2)如图②四边形内接于为直径点B是半圆的三等分点(弧弧)连接若平分且求四边形的面积.(3)如图③为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮其中一块圆形场地圆O设计人员准备在内接四边形ABCD区域内进行花卉图案设计其余部分方便游客参观按照设计要求四边形ABCD满足∠ABC=60°AB=AD且AD+DC=10(其中)为让游客有更好的观体验四边形ABCD花卉的区域面积越大越好那么是否存在面积最大的四边形ABCD?若存在求出这个最大值不存在请说明理由.5、如图AB是⊙O的直径弦CD⊥AB于点E点P⊙O上∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°求∠P的度数.-参考答案-一、单选题1、D【解析】【分析】首先连接OAOB由PAPB为⊙O的切线根据切线的性质即可得∠OAP=∠OBP=90°又由圆周角定理可求得∠AOB的度数继而可求得答案.【详解】解:连接OAOB∵PAPB为⊙O的切线∴∠OAP=∠OBP=90°∵∠ACB=70°∴∠AOB=2∠P=140°∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故选:D.【考点】此题考查了切线的性质与圆周角定理注意掌握辅助线的作法和数形结合思想的应用.2、D【解析】【分析】连接BE设正六边形的边长为a首先证明△PMN是等边三角形分别求出△PMN正六边形ABCDEF的面积即可.【详解】解:连接BE设正六