预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图公园内有一个半径为18米的圆形草坪从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点为圆心小强从走到走便民路比走观赏路少走()米.A.B.C.D.2、已知:如图PAPB分别与⊙O相切于AB点C为⊙O上一点∠ACB=65°则∠APB等于()A.65°B.50°C.45°D.40°3、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的侧面和底面则的长为()A.B.C.D.4、如图⊙O的半径为5AB为弦点C为的中点若∠ABC=30°则弦AB的长为()A.B.5C.D.55、已知扇形的圆心角为半径为则弧长为()A.B.C.D.6、如图AB是⊙O的直径BC与⊙O相切于点BAC交⊙O于点D若∠ACB=50°则∠BOD等于()A.40°B.50°C.60°D.80°7、已知圆内接正三角形的面积为则该圆的内接正六边形的边心距是()A.B.C.D.8、下列4个说法中:①直径是弦;②弦是直径;③任何一条直径所在的直线都是圆的对称轴;④弧是半圆;正确的有()A.1个B.2个C.3个D.4个9、如图PAPB是⊙O的切线AB是切点点C为⊙O上一点若∠ACB=70°则∠P的度数为()A.70°B.50°C.20°D.40°10、如图AB为的直径CD为上的两点若则的度数为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图将绕点顺时针旋转25°得到EF交BC于点N连接AN若则__________.2、如图是的外接圆的直径若则______.3、圆锥的底面半径为3侧面积为则这个圆锥的母线长为________.4、如图⊙O是△ABC的外接圆∠A=60°BC=6则⊙O的半径是_____.5、如图正五边形ABCDE内接于⊙O点F在上则∠CFD=_____度.三、解答题(5小题每小题10分共计50分)1、如图正五边形内接于为上的一点(点不与点重合)求的余角的度数.2、(1)课本再现:在中是所对的圆心角是所对的圆周角我们在数学课上探索两者之间的关系时要根据圆心O与的位置关系进行分类.图1是其中一种情况请你在图2和图3中画出其它两种情况的图形并从三种位置关系中任选一种情况证明;(2)知识应用:如图4若的半径为2分别与相切于点AB求的长.3、如图内接于则的直径等于多少?4、已知P为⊙O上一点过点P作不过圆心的弦PQ在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合)连接AP、BP若∠APQ=∠BPQ(1)如图1当∠APQ=45°AP=1BP=2时求⊙O的半径。(2)如图2连接AB交PQ于点M点N在线段PM上(不与P、M重合)连接ON、OP设∠NOP=α∠OPN=β若AB平行于ON探究α与β的数量关系。5、如图AB是⊙O的直径DE为⊙O上位于AB异侧的两点连接BD并延长至点C使得CD=BD连接AC交⊙O于点F连接AEDEDF.(1)证明:∠E=∠C;(2)若∠E=55°求∠BDF的度数.-参考答案-一、单选题1、D【解析】【分析】作OC⊥AB于C如图根据垂径定理得到AC=BC再利用等腰三角形的性质和三角形内角和计算出∠A从而得到OC和AC可得AB然后利用弧长公式计算出的长最后求它们的差即可.【详解】解:作OC⊥AB于C如图则AC=BC∵OA=OB∴∠A=∠B=(180°-∠AOB)=30°在Rt△AOC中OC=OA=9AC=∴AB=2AC=又∵=∴走便民路比走观赏路少走米故选D.【考点】本题考查了垂径定理:垂径定理和勾股定理相结合构造直角三角形可解决计算弦长、半径、弦心距等问题.2、B【解析】【分析】连接OAOB.根据圆周角定理和四边形内角和定理求解即可.【详解】连接OAOB∵PA、PB切⊙O于点A、B∴∠PAO=∠PBO=90°由圆周角定理知∠AOB=2∠ACB=130°∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故选:B.【考点】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.3、B【解析】【分析】设AB=xcm则DE=(6-x)cm根据扇形的