预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共27页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

人教版九年级数学上册第二十四章圆章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分满分100分考试时间90分钟2、答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置如需改动先划掉原来的答案然后再写上新的答案;不准使用涂改液、胶带纸、修正带不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题每小题3分共计30分)1、如图螺母的外围可以看作是正六边形ABCDEF已知这个正六边形的半径是2则它的周长是()A.6B.12C.12D.242、有一个圆的半径为5则该圆的弦长不可能是()A.1B.4C.10D.113、已知⊙O的半径为10圆心O到弦AB的距离为5则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°4、如图AB是⊙O的直径CD是⊙O上位于AB异侧的两点.下列四个角中一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD5、已知扇形的半径为6圆心角为.则它的面积是()A.B.C.D.6、如图在△ABC中∠ACB=90°AC=BCAB=4cmCD是中线点E、F同时从点D出发以相同的速度分别沿DC、DB方向移动当点E到达点C时运动停止直线AE分别与CF、BC相交于G、H则在点E、F移动过程中点G移动路线的长度为()A.2B.πC.2πD.π7、如图正方形的边长为4以点为圆心为半径画圆弧得到扇形(阴影部分点在对角线上).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是()A.B.1C.D.8、如图、为的切线、为切点点为弧上一点过点作的切线分别交、于、若则的周长等于().A.B.C.D.9、如图所示矩形纸片中把它分割成正方形纸片和矩形纸片后分别裁出扇形和半径最大的圆恰好能作为一个圆锥的底面和侧面则圆锥的表面积为()A.B.C.D.10、若某圆锥的侧面展开图是一个半圆已知圆锥的底面半径为r那么圆锥的高为()A.B.C.D.第Ⅱ卷(非选择题70分)二、填空题(5小题每小题4分共计20分)1、如图△ABC内接于☉O∠CAB=30°∠CBA=45°CD⊥AB于点D若☉O的半径为2则CD的长为_____2、如图PAPB分别切⊙O于AB并与⊙O的切线分别相交于CD已知△PCD的周长等于10cm则PA=__________cm.3、如图在Rt△ABC中∠ACB=30°⊙E为内切圆若BE=4则△BCE的面积为___________.4、数学课上老师让学生用尺规作图画Rt△ABC使其斜边AB=c一条直角边BC=a.小明的作法如图所示你认为小明这种作法中判断∠ACB是直角的依据是_____.5、一个扇形的弧长是面积是则这个扇形的圆心角是___度.三、解答题(5小题每小题10分共计50分)1、已知四边形内接于⊙O垂足为E垂足为F交于点G连接.(1)求证:;(2)如图1若求⊙O的半径;(3)如图2连接交于点H若试判断是否为定值若是求出该定值;若不是说明理由.2、已知:..求作:使它经过点和点并且圆心在的平分线上3、如图已知点在上点在外求作一个圆使它经过点并且与相切于点.(要求写出作法不要求证明)4、如图AB为⊙O的直径C、D为⊙O上的两个点==连接AD过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6求AD的长.5、我们知道与三角形各边都相切的圆叫做三角形的内切圆则三角形可以称为圆的外切三角形.如图1与的三边分别相切于点则叫做的外切三角形.以此类推各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边ABBCCDDA分别相切于点则四边形叫做的外切四边形.(1)如图2试探究圆外切四边形的两组对边与之间的数量关系猜想:(横线上填“>”“<”或“=”);(2)利用图2证明你的猜想(写出已知求证证明过程);(3)用文字叙述上面证明的结论:;(4)若圆外切四边形的周长为相邻的三条边的比为求此四边形各边的长.-参考答案-一、单选题1、C【解析】【分析】如图先求解正六边形的中心角再证明是等边三角形从而可得答案.【详解】解:如图为正六边形的中心为正六边形的半径为等边三角形正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆正多边形的半径中心角周长掌握以上知识是解题的关键.2、D【解析】【分析】根据圆的半径为5可得到圆的最大弦长为10即可求解.【详解】∵半径为5∴直径为10∴最长弦长为10则不可能是11.故选:D.